Please use this identifier to cite or link to this item: http://www.repository.rmutt.ac.th/xmlui/handle/123456789/409
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumam, Wiyada
dc.contributor.authorJaiboon, Chaichana
dc.contributor.authorKumam, Poom
dc.contributor.authorSingta, Akarate
dc.date.accessioned2012-03-01T09:13:32Z
dc.date.accessioned2020-09-24T04:56:44Z-
dc.date.available2012-03-01T09:13:32Z
dc.date.available2020-09-24T04:56:44Z-
dc.date.issued2010
dc.identifier.citationWeb of Science Category: Mathematics, Applied; Mathematicsen_US
dc.identifier.issn1029-242X
dc.identifier.urihttp://www.repository.rmutt.ac.th/dspace/handle/123456789/409-
dc.descriptionA Shrinking Projection Method for Generalized Mixed Equilibrium Problems, Variational Inclusion Problems and a Finite Family of Quasi-Nonexpansive Mappingsen_US
dc.description.abstractThe purpose of this paper is to consider a shrinking projection method for finding a common element of the set of solutions of generalized mixed equilibrium problems, the set of fixed points of a finite family of quasi-nonexpansive mappings, and the set of solutions of variational inclusion problems. Then, we prove a strong convergence theorem of the iterative sequence generated by the shrinking projection method under some suitable conditions in a real Hilbert space. Our results improve and extend recent results announced by Peng et al. (2008), Takahashi et al. (2008), S. Takahashi and W. Takahashi (2008), and many others.en_US
dc.language.isoenen_US
dc.publisherSPRINGER, 233 SPRING ST, NEW YORK, NY 10013 USAen_US
dc.subjectSTRICT PSEUDO-CONTRACTIONS; FIXED-POINT PROBLEMS; ITERATIVE ALGORITHMS; MONOTONE MAPPINGS; HILBERT-SPACES; INEQUALITIES; CONVERGENCE; THEOREMen_US
dc.titleA Shrinking Projection Method for Generalized Mixed Equilibrium Problems, Variational Inclusion Problems and a Finite Family of Quasi-Nonexpansive Mappingsen_US
dc.typeArticleen_US
Appears in Collections:บทความ (Article)

Files in This Item:
File Description SizeFormat 
A Shrinking Projection Method for Generalized Mixed Equilibrium Problems.pdf52.41 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.