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ABSTRACT 
 

The purposes of this research are to apply a mathematical model called the convection-
diffusion equation  
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 and a finite difference method  
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to the water pollution approximation problem in a uniform channel by modifying some parameters 
of the above methods and to formulate a constrained optimization model to keep the pollution levels 
and the associated budgets within acceptable ranges. In general, the pollution levels are measured 
via field data collection which is often complicated and erroneous at some data sources.  

The processes of this research begin by using a finite difference method to find a numerical 
solution of a second-order linear ordinary differential equation with Dirichlet and Neumann 
boundary conditions. Then a new finite difference method is proposed to solve the convection-
diffusion equation for approximating the water pollution concentration levels in the uniform 
channel. The obtained solutions are in the form of linear equations. And then, these solutions are 
used to formulate an optimization model, of which the objective function is to minimize the costs of 
water treatment and the constraints include the legal regulations and the planned budgets of the 
factory. 

The results of this research show that the modified convection-diffusion equation and the 
finite difference method are suitable to water pollution level approximation in a uniform channel  
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and the numerical solution   
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used to formulate the optimization model, assists the factory in controlling the expenses of water 
treatment while the pollution levels are in the legal regulations. The proposed techniques and 
methods can also be applied to the water pollution approximation problem in a uniform channel of 
other factories.   
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CHAPTER 1 
 

INTRODUCTION 
 
 A Mathematical Model of Water Pollution Using Finite Element Method (N. Pochai and 
S. Tangmanee, 2007). The finite element method for assessment of the COD concentration in a river, 
lake or another closed water area is considered. This model requires the permanent current and 
substance dispersion patterns. The chemical oxygen demand (COD) test is commonly used to 
indirectly measure the amount of organic compounds in water. COD is used to determine the amount 
of organic pollutants surface water. It is expressed in milligrams per liter (mg/l), which indicated the 
mass of oxygen consumed per liter of solution. The mathematical model for solving the dispersion of 
pollutant in a river. A finite difference method for assessment of the chemical oxygen demand 
(COD) concentration in a river is considered. The finite element method is used for water quality 
measurement and control in one-dimensional and two-dimensional domains. This model requires the 
calculation of the substance dispersion given the water velocity in the channel. In this topic, a finite 
difference method is used to compute the concentration of the pollutant for variable inputs. A 
numerical example is also given. 
  
1.1  Background and Statement of the Problem 
 The increase in an industrial occupation is the principal reason for the growth of pollution. 
Water quality must be protected and maintained for several uses, the principal ones being domestic 
water supply, energy production, industry, agriculture, fish and wildlife. The highest priority use is 
domestic water supply, with priorities for other uses depending largely on local or regional 
conditions and factors. Water pollution can effect humans in many ways, depending on the purpose 
for which the water resources are to be used. Since it affects human lives, it is health problem. 
 The term to pollute may be defined as to destroy the purity of or to make foul or dirty. 
Water pollution may therefore be defined as the alteration of the characteristics of a receiving water 
body in such a way as to make it unfit for one or more specific uses. To state it another way, 
pollution refers to the changes in the natural physical, chemical, and biological characteristics of a 
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receiving water caused by the discharge of any material into that water that detracts from beneficial 
use. 
 Control of pollution is necessary for the protection of the water environment and the 
maintenance of acceptable quality in rivers, lakes, reservoirs, streams, estuaries, oceans, and 
groundwater. The standard, in turn, will depend on the uses to be made of the receiving waters: 
water supply, fishing-wildlife, industrial, and other uses. 

The methods to detect the amount of pollutant both in the air and water mostly are 
conducted by a field measurement and a mathematical simulation. 
 
1.2  Purpose of the Study 
 To apply the one-dimensional of the convection diffusion equations to the water pollution 
problem in the channel with contaminant discharged. The convection and diffusion of the pollutant, 
the concentration of pollutant at any point in the domain will be approximated by the finite 
difference method. The steady state flow will be considered. The velocity of the current will be 
formulated as a known velocity function. 

Optimal control for the minimum cost of water treatment will be formulated and 
discussed. Computer program for working out the approximate model will be constructed. 
 

1.3  Theoretical Perspective 
 Theoretical perspective of the thesis is restricted to the application of the finite difference 

method to the water pollution problem in the stream, measurement and control, in the case of steady 
flow with regular boundaries. 
 

1.4  Delimitations and Limitations of the Study 
 In this thesis describes the mathematical modelling of the water pollution measurement 
and control in the water area. We have to establish a simulation process by means of which water 
pollution levels can be reduced to an agreed standard at the lowest cost. The first part gives the detail 
of the basic knowledge of the mathematical modelling for water pollution measurement in one-
dimensional problem. 
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 The second part gives the computation of the steady water quality measurement involved 
the numerical solution of a convection-diffusion equation. We also gives the fundamental of the 
finite difference formulation that the numerical methods to approximate the pollutant concentration 
in the one-dimensional water areas such as stream.   
 Finally, we give the method of water pollution control. In this part, the finite difference 
method for solving the one-dimensional steady convection-diffusion equation with variable 
coefficients is presented; it is then used to optimize water treatment costs. 
 

1.5  Significance of the Study 
The definition of terms of this thesis are the applicable model of water pollution 

assessment and cost optimal control of water pollution treatment in the stream. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
 

CHAPTER 2 
 

BASIC KNOWLEDGE 
 

2.1  Literature Review 
 In 2007, Pochai, N. and Tangmanee, S. give a mathematical model of water pollution 
using finite element method. The finite element method for solving the one-dimension and two-
dimension of steady state convection-diffusion equation with constant coefficients of nearly closed 
water area is presented. 
 In 2006, Pochai, N., Tangmanee, S., Crane L.J and Miller, J.J.H propose a mathematical 
model of water pollution control using the finite element method. They give the one-dimensional 
steady convection-diffusion equation with constant coefficients. It is then used to optimize water 
treatment costs.  

MacDonald, 1995 showed Linear Programming using Microsoft Excel Solver.  
 
2.2  Water Quality Model 

In order to calculate the solutions of mathematical model of water pollution, we requires 
some basic knowledge of the flow analysis. In this chapter, we will give the detail of some 
preliminaries of basic flow properties. We will also present the basic flow equation and convection-
diffusion equation with associated boundary conditions for one-dimensional system. 
       2.2.1  Governing equation : Convection – Diffusion  equation 

   This section gives a physical meaning of a mathematical model to the water pollutant 
dispersion in river. The dispersion of the COD concentration is described by the convection – 
diffusion equation on COD in an arbitrary domain n , n = 1, 2, 3 

                                                     


 2D
t

,                                                   (2.1) 

where  tx,  is the concentration fields,  tx,  is the velocity fields, and D  is the molecular 
diffusivity. Both   and  are function of position x and time t . The domain boundary can be of  
two types are 1 with specified COD concentration and 2 with specified flux of concentration, 
and total boundary   is  21 .  
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The boundary condition on 1 and 2 are 

                                                               0CC     on 1 ,                                         (2.2)  
   

                                                            0T
n

C






    
on 2 .                                    (2.3) 

       2.2.2  One dimensional convection – diffusion equation 
 A mathematical model for described the dispersion of COD concentration in one – 
dimensional problem, eg. river, channel, uniform channel and etc. (see Fig 2.1) will be presented. In 
the case of one – dimensional problem, we can deduce these problem to be the steady state 
convection – diffusion equation in an interval domain [a,b] 

                    ,0
2

2

 QRC
dx

dC
u

dx

Cd
Dx

                                          
(2.4)

 
where 

        xC :  concentration of COD at the point  bax ,  3/ mkg , 
         u   :  flow velocity in x  directions  sm / , 

       xD    :  diffusion coefficient  sm /2 , 

       R      :  the substance decay rate  1s , 

       Q      :   the increasing rate of substance concentration due to a source  smKg 3/ . 
The boundary conditions are  

                                0CC   at ax        and       0T
dx

dC
  at bx  .  
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Figure 2.1  Uniform Channel  
                   (Khlong Lad Poe, Samut Prakarn,Thailand,http://www.nationgroup.com) 

 
2.3  Numerical schemes 
       2.3.1  Finite difference method for second order linear ordinary differential equation          

   The finite difference methods in this section have good agreement stability characteristics, 
but they generally require more work to obtain a specified accuracy. Methods involving finite 
differences for solving boundary-value problems replace each of the derivatives in the differential 
equation by an appropriate difference-quotient approximation. The difference quotient is chosen to 
maintain a specified order of truncation error. The linear second-order boundary-value problem, 

                    ,xryxqyxpy        ,bxa         ,ay           by                (2.5) 
requires that difference-quotient approximations be used to approximate both y  and y  . First, we 
select an integer 0N  and divide the interval  ba,  into  1N  equal subintervals, whose 
endpoints are the mesh points ,ihaxi   for ,1,,1,0  Ni   where    1/  Nabh . 
Choosing the constant h  in this matter facilitates the application of a matrix algorithm, which solves 
a linear system involving an NN  matrix.  
                 2.3.1.1  A centered-difference formula for y    

                At the interior mesh points, ix , for Ni ,,2,1  , the differential equation to be 
approximated is 
                                               iiiiii xrxyxqxyxpxy  .                                    (2.6)  
Expanding y in a third Taylor polynomial about ix evaluated at 1ix  and 1ix  

http://www.nationgroup.com/
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



!!3!2

32

1  .
                       

(2.7)
 

We have 

        
                 iiiiiii y

h
xy

h
xy

h
xyhxyhxyxy 4

432

1
2462

,            (2.8)
 

for some 

i    1, ii xx , and 

       
                 iiiiiii y

h
xy

h
xy

h
xyhxyhxyxy 4

432

1
2462

,             (2.9) 

for some 

i     ,,1 ii xx   assuming  11

4 ,  ii xxCy . If these equations are added, the terms 
involving  ixy'  and  ixy   are eliminated, and simple algebraic manipulation gives 

                
                 

 
iiiiii yy

h
xyxyxy

h
xy  44

2

112 24
2

1 .                    (2.10) 

The Intermediate Value Theorem can be used to simplify this even further: 

                                        4
2

112 12
2

1
y

h
xyxyxy

h
xy iiii 

 ,                               (2.11)                                       

  for some   in  11 ,  ii xx . This is called the centered-difference formula for  ixy  . 
                 2.3.1.2  A centered-difference formula for y    

                A centered-difference formula for  ixy  is obtained in a similar manner,  

                
 

       
R

k

hxyhxyhxy
hxyyy

k

i

k

ii

iii 






!!3!2

32

1  .
               

We have 

               
                 iiiiiii y

h
xy

h
xy

h
xyhxyhxyxy 4

432

1
2462

,         
 

for some 

i    1, ii xx , and 

              
                 iiiiiii y

h
xy

h
xy

h
xyhxyhxyxy 4

432

1
2462

,         

for some 

i     ,,1 ii xx   assuming  11

4 ,  ii xxCy . If these equations are minused, the terms 
involving  ixy   and    iy 4  are eliminated, it follows that 

             
        iiii y

h
xyxy

h
xy 


62

1 2

11 , for some i in  11 ,  ii xx .                  (2.12) 

                 2.3.1.3  A Matrix Form of Solution  
                The use of these centered-difference formulas in  Eq. (2.6)  results in the equation  

           iiiiii xrxyxqxyxpxy  ,  
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                  









  iiiiiiii y
h

xyxy
h

xpy
h

xyxyxy
h


62

1

12
2

1 2

11

4
2

112

 
                                                                                       iii xrxyxq  .                           (2.13) 
We have, 

        
   

     iii

ii

iiii xrxyxq
h

xyxy
xpxyxyxy

h








 
 


2

2
1 11

112
 

                                                                    
        iii yyxp

h
 4

2

2
12

 .                            (2.14)
 

A finite difference method with truncation error of order  2hO  results by using Eq. (2.14) together 
with the boundary conditions   ay  and   by , we define 

              0w   and    1Nw ,                                     (2.15)
 

we can obtain 

    
        

   
     iii

ii

iiii xrxyxq
h

xyxy
xpxyxyxy

h








 
 


2

2
1 11

112
,     (2.16)

 

         
     iii

ii

i

iii xrwxq
h

ww
xp

h

www








 








  

2

2 11

2

11 ,                    (2.17) 

for each Ni ,,2,1  , Eq. (2.17) can be obtained 

               
        iiiiiii xrhwxp

h
wxqhwxp

h 2

1

2

1
2

12
2

1 
















  ,              (2.18) 

and the resulting system of equations is expressed in the tridiagonal NN  -matrix form     

            BAW  ,                                   (2.19) 
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   

     

 

    













































NN

N

xqhxp
h

xp
h

xp
h

xqhxp
h

xp
h

xqh

A

2

1

22

2

2

11

2

2
2

1

2
1

2
12

2
1

2
12



 , 































N

N

w

w

w

w

W

1

2

1

                       and         

   

 

 

    

























































1

2

1

2

2

2

011

2

2
1

2
1

NNN

N

wxp
h

xrh

xrh

xrh

wxp
h

xrh

B  . 

        2.3.2  Finite difference methods for second order linear ordinary differential  
     equation with Robin boundary conditions 

We considered the one dimensional two-point boundary value problem from Eq. (2.5) 

          ,xryxqyxpy     bax , .                        
Subject to the Dirichlet boundary conditions 

      ay   and    .by                          
The pollutant concentration at each end of the channel might not be known. For example, we might 
only know that the end at bx   was steady, so that there was no flux from that end. This would 
give rise to a boundary condition of the form 

     0 by .                                                   (2.20) 
A boundary condition of this form, in which the value of the derivative is specified, is known as a 
Neumann boundary condition. We also might only know that discharge pollutant concentration is 
taking place at the end .ax  This would give rise to the boundary condition 

     0Cay  .                                                   (2.21) 
A boundary condition of this type, in which a linear combination of the value of the function and the 
value of the first derivative is specified, is known as a Robin boundary condition.  
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We will investigate the formulation of finite difference approximations for linear boundary value 
problems subject to both Neumann and Robin boundary conditions. 
                 2.3.2.1  Non-Dirichlet Boundary Conditions 

                Because the general Neumann boundary condition 

    ay    or     by ,                                         (2.22) 
is just a special case of the general Robin boundary condition 

        321   ayay     or       321   byby .                            (2.23) 
Setting 01   or 01  , we will develop the system of algebraic equations for the finite 
difference approximation to the linear boundary value problem 

     ,xryxqyxpy      bax ,  ,                               (2.24) 
subject to the Robin boundary conditions 

      321   ayay ,                                         (2.25) 

       321   byby .                                   (2.26) 
We will assume that 02  and 02  . For the computational grid, let N be a positive integer, 
and partition the interval  ba,  into 

0 1 2 1 ,N Na x x x x x b                                       (2.27) 
where ihaxi  and   Nabh / . Further, let iw denote the approximation to the exact 
solution,  xy , at ixx  . We need 1N equations to determine the values Nwwww ,,,, 210  . 
These are 1N of these equations are obtained as in the previous section: Evaluate the differential 
equation at each interior grid point  11  Nixx i , replace the derivatives by second-order 
central difference approximations, drop the truncation error terms and collect like terms. The 
resulting computational template is 

                      iiiiiii rhwp
h

wqhwp
h 2

1

2

1
2

12
2

1 
















  .                          (2.28) 

Consider Eq. (2.25) at ax 0  and bxN  ,       

        321   ayay .   
To maintain the first-order accuracy of the equations, we could replace the derivative in the 
boundary condition by the  hO  central difference approximation, Eq. (2.12) leads to 

     
h

xyxy
y ii

i
2

11  
 ,                                                      (2.29) 

The coefficient matrix and the second-order accuracy of the approximation, is to introduce a  
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“fictitious node” to the computational grid. Applying the computational template for the 
differential equation at 0xx  produces 

             0

2

1000

2

0
2

12
2

1 rhwp
h

wqhwp
h

f 
















 ,                     (2.30) 

         
 

 
 

        

    Neumann/Robbin   

    boundary condition   

    specified   

         

         

         

      

         

         
         

         

         
         

 Fictitious node Computational domain   

         

         

Figure 2.2  Fictitious node 

of course, fw must be eliminated from this equation. By applying the Robin boundary condition of 
Eq. (2.25),   
                 321   ayay ,    
we obtain 

3

1

201
2

 



h

ww
w

f ,                                  (2.31) 

where we have replaced the first derivative with its second-order central difference approximation. 
Solving fw yields 

 013

2

1

2
w

h
ww f 


 .                                       (2.32) 

 

h hh

fx ax 0 1x
2x
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Substituting Eq. (2.32) into Eq. (2.30), we obtain the finite difference equation associated with 
ax  , 

 
   

2

3

00

2

10

2

1
00

2 2222







hhprhwwhhpqh 








 .                         (2.33) 

                  2.3.2.2  Neumann boundary condition 
                  For a Neumann boundary condition, 01  , so the corresponding finite 

difference equation would becomes 

                                         hhprhwwqh o 00

2

10

2 222  ,                                (2.34) 
where   = 23 / . 
Performing a similar analysis for a Robin boundary condition at bx  , we find the corresponding 
finite difference to be  

            
2

32

2

12

1 2222







hhprhwhhpqhw NNNNNN 








  .                   (2.35) 

For a Neumann boundary condition at bx  , the equation becomes 
    hhprhwqhw NNNNN   222 22

1 .                                   (2.36) 
 
 
 

 

 

 
 
 
 
 
 
 
 



 
 

CHAPTER 3 
 

WATER QUALITY MEASUREMENT USING  
NUMERICAL METHOD 

  
  Water pollution assessment problems arise frequently in environmental science. In this 
research, a finite difference method for solving a one-dimensional steady convection-diffusion 
equation with variable coefficients is presented. 
 
3.1  Numerical techniques  

Consider the convection - diffusion equation in the form, 

         0
2

2

 QRC
dx

dc
u

dx

cd
Dx ,                                     (3.1) 

where  xc  is concentration of COD at the point  bax ,  3/ mkg ,  xp  is flow velocity in x  
directions  sm / ,  xq  is the increasing rate of substance concentration due to a source 
 smKg 3/ , and  xr  the substance decay rate  1s . 

First, we select an integer 0N and divide the interval  ba, into  1N  equal 
subintervals, whose endpoints are the mesh points ihaxi  , for all 1,...,2,1  Ni , where 

   1/  Nabh . At the interior mesh points, ix , for Ni ,...,2,1 , the differential equation to 
be approximated is 

           iiiiii xrxcxqxcxpxc  .                                 (3.2) 
Expanding y in a third Taylor polynomial about ix evaluated at 1ix  and 1ix , we have  

            
                iiiiiii c

h
xc

h
xc

h
xchxchxcxc 4

432

1
2462

,               (3.3) 

for some 

i  in  1, ii xx , and  

         
                iiiiiii c

h
xc

h
xc

h
xchxchxcxc 4

432

1
2462

,                  (3.4) 

for some 

i  in  ii xx ,1 , assuming  11

4 ,  ii xxCc . If these equations are added, the terms 
involving  ixc  and  ixc   are eliminated and simple algebraic manipulation gives 

      
               

 
iiiiii cc

h
xcxcxc

h
xc  44

2

112 24
2

1                          (3.5) 
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The intermediate value theorem (Bradie, 2006) can be used to simplify this even further: 

           iiiii c
h

xcxcxc
h

xc 4
2

112 12
2

1


 ,                                  (3.6) 

for some i  in  11,  ii xx . A centered-difference formula for  ixy  is obtained in a similar 
manner resulting in 

        iiii c
h

xcxc
h

xc 


62

1 2

11 ,                                  (3.7) 

for some i  in  11,  ii xx . The use of these centered-difference formulas in Eq. (2.14) results in the 
equation 

   
     

 
   

     iii

ii

i

iii xrxcxq
h

xcxc
xp

h

xcxcxc








 


 

2

2 11

2

11  

         
        iii ccxp

h
 4

2

2
12

 .                    (3.8) 

For the lower bound, Ni  , A finite difference method with truncation error of order  2hO  
results by using the equation (3.8) together with the non-Dirichlet boundary conditions                          
                                                                cac )( ,                                                            (3.9)                                                                         

                                                         0)( Tbc  .                  (3.10) 
That is 

                                                              000 cwC  ,                                       (3.11) 

1011 2   NNN whTwC ,                               (3.12) 
substituting Eq. (3.12) into Eq. (3.8), where  ,ii xCw  for all .1,,3,2,1  Ni   For Ni  , 

   
     NNN

NN

N

NNN xrwxq
h

wwhT
xp

h

wwwhT








 


 

2

222 110

2

110 ,      (3.13) 

                     
     NNNN

NN xrwxq
h

hT
xp

h

wwhT











 

2

2222 0

2

10 ,                 (3.14) 

                     
     NNNN

NN xrwxqTxp
h

wwhT


 

02

10 222 ,                                   (3.15) 

                            NNNNNN xrwxqxpThwwhT   0

2

10 222 ,                           (3.16) 

                    NNNNNN xrhxpThhTwxqhww 2

0

2

0

2

1 222   ,                        (3.17) 
                           0

22

1 222 hTxhpxrhwxqhw NNNNN   ,              (3.18) 
Using the central difference method, Eq. (2.11) and (2.12) we can obtain 

      
     iii

ii
i

iii xrwxq
h

ww
xp

h

www








 








  

2

2 11

2

11 ,               (3.19) 
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        iiiiiii xrhwxp

h
wxqhwxp

h 2

1

2

1
2

12
2

1 
















  ,                    (3.20) 

where  ii xcw  , for all 1,...,3,2,1  Ni . For Ni  , substituting equation (3.10) into equation 
(3.8), we obtain, 

          hxhpxrhwxqhw NNNNN   222 22

1 .                  (3.21) 
Then the equation system equations (3.19) can be written in the matrix form 

 BAW  ,                                     (3.22) 
where, 
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3.2  Numerical experiment : water pollution measurement 
 Assume that there is a plant which discharge waste water into the channel at the starting 
point 0.0 km . and that the COD concentrations of the waste water are 12 3/ mkg . The physical 
parameters are: diffusion coefficient 2 sm /2 , flow velocity xu  5 sm/ , where  4,0x , 
substance decay rate 3  1s and rate of change of substance concentration due to a source 
1 smKg 3/ . The space increment size 100 m . is used for the numerical treatment. We can obtain 
variable coefficients of convection-diffusion equation (3.2) are 
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By taking equation (3.1), we can obtain the approximate COD concentration in Table 3.1 and  
Fig. 3.1 
Table 3.1  COD concentration assessment along a channel 

Distance 
 .Km  

COD concentration 
 3/ mKg  

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

12.0000 
10.0833 
8.4426 
7.0791 
5.9783 
5.1294 
4.5254 
4.1640 
4.0479 
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Figure 3.1  The decreasing of COD concentration along the channel 
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CHAPTER 4  
 

WATER POLLUTION CONTROL USING OPTIMIZATION 
  
 Water pollution assessment problems arise frequently in environmental science. In this 
research, the finite difference method for solving the one-dimensional steady convection-diffusion 
equation with constant coefficients is presented; it is then used to optimize water treatment costs. 
 
4.1  Optimal control of cost   

Let x be the observation nodes and r be the COD concentration that is removed at 
inflow points. It follows that  rC  is the concentration of the pollutant after partial purification. 
Then 

                                       NN gbrgbgbC   11

~ .                                 (4.1) 
Let STC  be the standard COD concentration. The water quality C

~ must be at or below the standard 
water quality. That is 

  ST

n
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n

i CrgbgbC
jjj
 





11

~ ,                 (4.2) 

where m  is the number of observation points and n  is the number of inflow points  nmN  .  
The objective function J is the cost of wastewater treatment in the system, so 

                                                             
 

j
rwxJ

m

j

j 



1

,                                                   (4.3) 

where jw  is the cost of waste water treatment for the required reduction of the COD concentration. 
The constraints are  

                                      
  ST
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i

CrgbgbC
jjji
 


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11

~ ,                                (4.4) 

the upper bound of the control (treatment plant) is 

jj
ur   ,                                 (4.5) 

the lower bound of the control (treatment plant) is  

                                                                    ,
jj

lr                                                                      (4.6) 
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the controls are non-negative, that is  
0

j
r ,                                   (4.7) 

where 
j

l and 
j

u are the lower and upper bounds respectively of the points control variables. The 
optimal control problem is solved by the simplex method. If we assume WC   on Eq. (3.22), we 
have the matrix form of water pollution control at sample controlled nodes number 1,3,5 as 

  BAC 1 .                   (4.8) 
Then 

              NN gbrgbgbrgbgbrgbC 15515414331321211111   .            (4.9) 
If   is a controlled node number, the general form of control equation can be written as 

                                NN gbrgbgbC   11

~ .                                        (4.10) 
In the general form, we can obtain               

                                                           GAC 1~  ,                                           (4.11) 
where 
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4.2  Optimization using Microsoft Excel Solver (MacDonald,1995) 
To use Excel for solve LP problems the Solver add-in must be included. Typically this feature is not 
installed by default when Excel is first setup on hard disk. To add this facility Tools menu we need 
to carry out the following steps. 

1. Select the menu option Tools/ Add Ins (this will take a few moments to load the  
                        necessary file). 

2. From the dialogue box presented check the box for Solver Add-In. 
3. On clicking OK, we will then be able to access the Solver option from the new menu      

          option/ Tools/ Solver (which appears below Tools/Scenarios). 
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 To illustrate Excel Solver we will consider Hillier & Lieberman’s reasonably well known 
example, the Wyndor Glass Co., problem (Hillier & Lieberman, 1995). The problem concerns a 
glass manufacturer which uses three production plants to assemble its products, mainly glass doors 
( 1x ) and wooden frame windows ( 2x ). Each product requires different times in the three plants and 
there are certain restrictions on available production time at each plant. With this information and a 
knowledge of contributions to profit of the two products the management of the company wish to 
determine what quantities of each product they should be producing in order to maximize profits. In 
order words, the Wyndor Glass Co. problem is a classic, albeit very simple, product-mix problem. 
The problem is formulated as the following linear program: 

           Max z    = 21 23 xx    (Objective),                              (4.13) 
Subject to              41 x           (Plant One),                         (4.14) 

                122 2 x                (Plant Two),                        (4.15) 

      1823 21  xx                (Plant Three),                          (4.16) 

                                                      0, 21 xx                  (Non-negativity requirements),          (4.17) 
where                 z  is total profit per week, 

                                 1x  is number of batches of doors produced per week, 

      2x is number of batches of windows produced per week. 
Having formulated the problem, and may have substantially more decision variables and constraints, 
we can then proceed to entering it into Excel. The best approach to entering the problem into Excel 
is first to list in a column the names of the objective function, decision variables and constraints. We 
can then enter some arbitrary starting values in the cells for the decision variables, usually zero, 
shown in Figure 4.1. Excel will vary the values of the cells as it determines the optimal solutions. 
Having assigned the decision variables with some arbitrary starting values we can use these cell 
references explicitly in writing the formulae for the objective function and constraints, remembering 
to start each formula with an ‘=’ 
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Figure 4.1  Setting up the problem in Excel 

Entering the formula for the objective and constraints, the objective function in B5 will be given by          
  =3*B9+2*B10.                 (4.18) 

The constraints will be given by (putting the right hand side {RHS} value in the adjacent cells 
Plant One     (B14)      =     B9, 
Plant Two    (B15)      =     2*B10, 
Plant Three  (B16)      =     3*B9+2*B10, 
Non-neg 1    (B17)      =    B9, 
Non-neg 2     (B19)     =    B10. 

On selecting the menu option Tools/ Solver the dialogue box shown in Figure Two is revealed, and 
if we select the objective cell before invoking Solver the correct Target Cell will be identified. This 
is the value Solver will attempt either to maximize or minimize. 
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Figure 4.2  The Solver Dialogue Box 
 
Select whether we wish to minimize this or maximize the problem, in this case we would want to set 
the target cell (the objective) to a Max. Note that we can use Solver to find the outcome that will 
achieve a specified value for the target cell by clicking ‘Value of’. In doing this we can use Solver as 
a glorified goal seeker. Next we enter the range of cells we want Solver to vary, the decision 
variables. Click on the white box and select cells B9 & B10, or alternatively type them in. Note that 
we can try to get Solver to guess which cells we want to vary by clicking the ‘Guess’ button, If we 
have defined our problem in a logical way Solver should usually get these right. 
 We can now enter the constraints by first clicking the ‘Add’ button. This reveals the 
dialogue box shown in Figure 4.3 

Figure 4.3  Entering Constraints 
 

The cell reference is to the cell containing our constraint formula, so for the Plant One constraint we 
enter B14. By default <= is selected but we can change this by clicking on the drop down arrow to 
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reveal a list of other constraint types. In the right hand white box we enter the cell reference to the 
cell containing the RHS value, which for the Plant One constraint is cell C14. We then click ‘Add’ to 
add the rest of the constraints, remembering to include the non-negativity constraints. 
 Having added all the constraints, click ‘OK’ and the Solver dialogue box should look like 
that shown in Figure 4.4. 

Figure 4.4  The Completed Solver Dialogue Box 
 
  Before clicking ‘Solve’ it is good practice when going LPs to go into the Options and 
check the ‘Assume Linear Model’ box, unless, of course, our model isn’t linear (Solver can handle 
most mathematical program types, including non-linear and integer problems). Doing this can speed 
up the length of time taken for Solver to find a solution to the problem and in fact, it will also ensure 
the correct result and quite importantly, provide the relevant sensitivity report. Having selected this 
option we are now ready to Click ‘Solve” and see Solver find the optimal values for doors and 
windows. On doing this, at the bottom of the screen Excel will inform we of Solver’s progress, then 
on finding an optimal solution the dialogue box shown in Figure Five will appear. We will also 
observe that Solver has altered all the values in our spreadsheet, replacing them with the optimal 
results. 
  We can use the Solver Results dialogue box to generate three reports. To select all three 
at once, either hold down CTRL and click each on in turn or drag the mouse over all three. 
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Figure 4.5  Solver Results 
 

At the same time it’s often a good idea to get Solver top restore your original values in the 
spreadsheet so that can return to the original problem formulation and make adjustments to the 
model such as altering the availability of resources. The three reports are generated in new sheets in 
the current workbook of Excel. 

The Answer Report gives details of the solutions in this case, profit is maximized at 18 
when 4 doors per week are produced and 3 windows per week- and information concerning the 
status of each constraint with accompanying slack/surplus values is provided. The Sensitivity Report 
for the Wyndor problem, which provides information about now sensitive your solution is to changes 
in the constraints, is shown in the figure 4.6. 
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Figure 4.6  Sensitivity Report for Wyndor 
 

4.3  Water pollution control using optimization 
 Assume that there are plants A, B and C which discharge wastewater into the river at the 
points 0.0 km, 0.4 km and 0.8 km. and the COD concentrations of the wastewater are 1.25, 1.7418 
and 1.9312 lmg / , respectively. The physical parameters are diffusion coefficient 2 sm /2 , flow 
velocity xu  5 sm / , where  2,0x , substance decay rate 3 1s  and rate of  change  of 
substance concentration due to a source 1 ldaymg / . The legal requirement is that the plant has to 
decrease the COD concentration in the wastewater to less than 0.1 lmg /  in the stretch from the 
plant A to a point 2.0 .km downstream from A. At the observation points the COD concentration 
must be less than 1.2 lmg / . Plants A, B and C are capable of treating the wastewater, so that the 
COD concentration is not greater than 1.0, 1.0 and 1.0 lmg / , respectively. The costs of wastewater 
treatment for the reduction by 1 lmg / of COD concentration are 200,000, 300,000 and 360,000 
Baht for plants A, B and C, respectively. It turns out that the least cost of wastewater treatment is 
406,339.58 Baht. 
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Table 4.1  Compare COD concentration at the discharge point at node 1, 3, 5 ( lmg / ) 

Node 
Unpurified 

Inflow 
Observations 

Unpurified 
Inflow 

Observations 
Purified 
Inflow 

Observations 

1 1.2500 1.2500 1.0000 1.0000 1.1500 1.1500 
2 - 0.7585 - 0.6068 - 0.6978 
3 1.7418 1.7418 1.0000 1.0000 1.1838 1.1838 
4 - 1.7600 - 0.9709 - 1.2000 
5 1.9312 1.9312 1.0000 1.0000 1.3231 1.3231 
6 - 1.7516 - 0.9070 - 1.2000 
7 - 1.5923 - 0.8245 - 1.0909 
8 - 1.4542 - 0.7530 - 0.9963 
9 - 1.3405 - 0.6941 - 0.9184 

10 - 1.2581 - 0.6515 - 0.8619 
11 - 1.2214 - 0.6325 - 0.8368 

 
 From the table shown that, the COD concentration at discharge points 0.0, 0.4 and 0.8 km. 
are 1.25, 1.7418 and 1.9312 lmg / , respectively. We can see the COD concentration at the 
observation points as the table from node 1 to 11. If we change the COD at discharge points from 
1.25 to 1.0000, 1.7418 to 1.0000 and 1.9312 to 1.0000, it will give the COD at the observations as 
1.0000, 0.6068, 1.0000, 0.9709, 1.0000, 0.9070, 0.8245, 0.7530, 0.6941, 0.6515 and 0.6325 
respectively. 
  
  
  
 
 
 



27 

 

 

Figure 4.7  Unpurified Inflow 
 We also show the graph below of Unpurified Inflow. The graph shown that the COD 
concentration before control at the observations points are greater than the standard 1.2 lmg / . 

 

Figure 4.8  Purified Inflow 
     We can see that the COD concentration after control almost less than the standard 1.2 

lmg / . 
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Table 4.2  Optimal cost of wastewater treatment 

 
 From the table, the plant A can reduce COD concentration 0.1000 lmg /  at the cost 
20,000 baht, plant B can reduce COD concentration 0.5580 lmg /  at the cost 167,412.41 baht and 
plant C  can reduce COD concentration 0.6081 lmg /  at the cost 218,927.17 baht. So the minimum 
cost of treatment in the system is 406,339.58 baht.  

The COD concentration at discharge point at plant A, B and C are 1.0000, 1.0000 and 
1.0000 lmg / . The cost are 200,000, 300,000 and 360,000 baht respectively. The total cost in the 
system is 860,000 baht that is much more the cost of we control 406,339.58 baht.  
 
 
 
 

 
 
 

 
 
 
 

Plant 

Unpurified 
Inflow  Optimal Cost of 

Optimal 
Reduction 

 
Optimal Cost 

Of COD 
Concentration 

Unpurified Inflow 
(Baht) 

Of COD 
Concentration 

of Reduction 
(Baht) 

A 1.0000 200,000.00 0.1000 20,000.00 
B 1.0000 300,000.00 0.5580 167,412.41 
C 1.0000 360,000.00 0.6081 218,927.17 

 
Cost 

(Baht) 
860,000.00 

Minimum cost 
(Baht) 

406,339.58 

 lmg /  lmg /



CHAPTER 5  
 

CONCLUSIONS AND RECOMMENDATIONS     
 

  We have established a simulation process by finite difference method. By the numerical 
solutions, it can be obtained that the COD concentration along a channel. These mean that the trend 
of concentration along the channel is lower than the discharge concentration. We can conclude that 
the water pollution levels can be reduced to an agreed standard at least cost. 
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