
KINEMATICS SIMULATION AND EXPERIMENT FOR OPTIMUM DESIGN OF A
NEW PROTOTYPE PARALLEL ROBOT

MR. SURIN SUBSON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN

MECHATRINICS ENGINEERING (INTERNATIONAL PROGRAM)
FACULTY OF TECHNICAL EDUCATION,

ACADEMIC YEAR 2022
RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI,

COPYRIGHT OF RAJAMANGALA UNIVERSITY
OF TECHNOLOGY THANYABURI

KINEMATICS SIMULATION AND EXPERIMENT FOR OPTIMUM DESIGN OF A
NEW PROTOTYPE PARALLEL ROBOT

MR. SURIN SUBSON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN

MECHATRINICS ENGINEERING (INTERNATIONAL PROGRAM)
FACULTY OF TECHNICAL EDUCATION,

ACADEMIC YEAR 2022
RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI,

COPYRIGHT OF RAJAMANGALA UNIVERSITY
OF TECHNOLOGY THANYABURI

(1)

-

 ,

 2565

 3 (Process Simulate for Robotics)

(2)

 -

MATLAB

 (Machine Vision)

 1 2 3 0° 4º

NI Vision

LabVIEW 95%

 MATLAB

(3)

Thesis Title Kinematics Simulation and Experiment for Optimum Design of

 a Parallel Robot

Name – Surname Mr. Surin Subson

Program Mechatronic Engineering

Thesis Advisor Associate Professor Dechrit Manetham. D Eng.,Ph.D.

Academic Year 2022

Abstract

Robotics and automation have been playing an increasing role in the global

manufacturing sector over the past decade. The industrial robot is a sub-unit in automation

that has attracted a lot of attention and is rapidly increasing in use. Today's production

line uses automation to solve various production problems such as delays, wastage, etc.

If automation is not handled well, it can also cause mistakes and damage to production

lines. Therefore, in order to create positive effect on the producers, effective planning for

the use of robotics and automation is required. Product planning and understanding of

robot design and use are required so that the robot can work precisely to suit the working

conditions. It is necessary to study the use of robotic arms in production lines. The most

important point is to control the robot arm to work properly, in order to get the correct

location coordinates.

Robot and automation simulator program can simulate the movement of the production

process in the form of a computer model. Program will test the desired concepts on the

computer. In order to study the system behavior, simulation is allowed before the real

work. It leads to automation analyze and improvement to be more effective for time and

cost reduction which occur in on-site problem with 3D animation display.

Process simulation of Robotics can analyze the arising operation problem such as reach

ability, collision detection, operation simulation of other devices with the mechanical

system working the robot such as opening and closing of the Jig Fixture or Conveyor

movement. The simulation helps operator plan and fix the error during designing time

before actual installation.

In this thesis, a program design for simulating the trajectory tracking of a parallel robot

is proposed. With the MATLAB simulation program, the theory of the inverse kinematic

(4)

analysis is used to test the coordinate position of the robot arm and the trajectory of the

robot model. The simulation results are compared between actual test result and the

prototype parallel robot. In order to analyze the precision in the working area of the robot,

a prototype parallel robot was designed to work with the Machine vision system to obtain

the results from comparison for analysis and understanding the context of automation

design. Referring to the result of the inverse kinetics simulations compared with the real

experiments, robots are designed to suit the need of each industry. The steady-state joint

angle tolerance of the prototype robot arm 1 2 , and 3 ranged from 0 ° to 4 º degrees

were examined. The experimental result of image processing and color detection were

obtained. According to the machine vision system with the NI Vision LabVIEW program,

the result showed more than 95% accuracy.

Keywords: Parallel robot, Kinematic of Robotic, MATLAB Simulink, Trajectory

 Modeling, Image Processing

(5)

Acknowledgements

For this thesis, first of all, I would like to express my sincere gratitude to my

thesis advisor Associate Professor Dr. Dechrit Manetham for the valuable of guidance

and encouragement which helped me in all the time of my research.

Secondly, I would like to thank to the thesis committees, Dr. Petrus Sutyasadi,

Dr. Evi Triandini and Dr. Ren Jean Liou for their valuable comments and helpful

suggestions.

Thirdly, I would like to thank to all of the lecturers, Dr. Tenzin Rabgyal and

Dr. Worawat Sa-ngiamvibool for their valuable lectures and experiences while I was

studying.

Fourthly, I would like to thank to Dr. Myo Min Aung for helpfulness in

coordination for documentations.

Finally, I would like to thank to my mother for all her love and encouragement.

Surin Subson

(6)

 Table of Contents
Page

Abstract .. (3)

Acknowledgements .. (5)

Table of Contents ... (6)

List of Table ... (8)

List of Figures .. (9)

CHAPTER1 .. 13

INTRODUCTION .. 13

1.1 Study Background ... 13

1.2 Statement of the Problem .. 17

1.3 Purpose of the Study ... 19

1.4 Research Questions and Hypothesis ... 19

1.5 Theoretical Perspective ... 19

1.6 Delimitations and Limitations ... 20

1.7 Significance of Study .. 20

CHAPTER2 .. 21

REVIEW OF THE LITERATURE .. 21

2.1 Industrial Robotic .. 21

2.2 Parallel Robot .. 35

2.3 Stepping Motor .. 36

2.4 Stepper Motor Driver .. 48

2.5 Encoder ... 50

2.6 MATLAB Simulink Program ... 54

2.7 SolidWorks Program ... 57

2.8 Arduino Microcontroller Board .. 59

2.9 Program Arduino IDE C++ ... 60

2.10 Machine Vision ... 72

2.11 NI Vision LabVIEW Program .. 73

2.12 NI LabVIEW Interface for Arduino Microcontroller ... 81

(7)

Table of Contents (Continued)
Page

CHAPTER3 .. 84

RESEARCH METHODOLOGY ... 84

3.1 Parallel Robot Structure .. 84

3.2 Parallel robot Arm parameters .. 87

3.3 Control System Design ... 88

3.4 Parallel Robot Kinematics ... 91

3.5 MATLAB Program for Parallel Robotic Kinematic Simulation 95

3.6 NI Vision LabVIEW Program for Target Object Color Detection and interface
with Arduino microcontroller Board ... 95

3.7 Arduino IDE C++ Program for Robotic Kinematic Detection 96

CHAPTER4 .. 97

RESEARCH RESULT ... 97

4.1 Parallel Workspace Analysis and Simulation of Manipulator based on MATLAB
 ... 97

4.2 Workspace and Trajectory Tracking Experiment of Prototype Parallel Robot .. 108

4.3 Experimental Results from LabVIEW Vision Control 115

CHAPTER5 .. 121

CONCLUSION AND RECOMMENDATION .. 121

5.1 Discussion and Recommendation ... 121

5.2 Implication for Practice and Future Research ... 122

List of Bibliography .. 123

APPENDICES .. 126

APPENDIX A ... 127

APPENDIX B ... 164

APPENDIX C ... 166

Biography .. 170

(8)

List of Table

Page

Table 2.1 Comparison table between link structure of robot and human arm 32

Table 2.2 Names and functions of each Joint and comparison with human arm 34

Table 2.3 Power supply to 1-Phase and 2-Phase on Stepping in Full Step Mode 45

Table 2.4 Power supply to 1-Phase and 2-Phase on Stepping in Half Step Mode 46

Table 2.5 IMAQ COLORMATCH VI IMPLICATION [20], .. 81

Table 3.1 List of Parallel robot Component ... 86

Table 3.2 Parallel robot Manipulator Key component parameter and dimensions 88

Table 3.3 Parallel robot workspace simulation configuration parameter 95

Table 4.1 Simulation result in limit workspace point for Scenario 2, 99

Table 4.2 Simulation result in limit workspace point for Scenario 2, 103

Table 4.3 Scenario 3, limit workspace simulation .. 105

Table 4.4 Scenario 4, limit workspace simulation result .. 108

Table 4.5 Parallel Robot Experiment for joint angle orientation 112

Table 4.6 Parallel Robot joint angle orientation results .. 112

Table 4.7 Parallel Robot error signal of joint angle orientation results 113

Table 4.8 LabVIEW Vision Experiment and Result for Color Matching Processing .. 115

Table 4.9 LabVIEW Vision Experiment and Result for Color Gain 116

(9)

List of Figures
Page

Figure 2.1 Comparison picture of an industrial robot's arm and a human body 21

Figure 2.2 Cartesian Robot Manipulator .. 22

Figure 2.3 Spherical Robot Manipulator .. 23

Figure 2.4 Cylindrical Robot Manipulator ... 24

Figure 2.5 SACARA Robot Manipulator ... 25

Figure 2.6 Articulated Robot Manipulator ... 26

Figure 2.7 Parallel Robot Manipulator ... 27

Figure 2.8 Degrees of Freedom Chart .. 29

Figure 2.9 Rotational 3 DOF motion .. 29

Figure 2.10 3-DOF of objects in 2D and 3D planes ... 30

Figure 2.11 Structure of Link or the robot's arm .. 32

Figure 2.12 Joint of the robot and its name .. 33

Figure 2.13 Various joints of robot ... 35

Figure 2.14 Sample of Parallel Robot .. 36

Figure 2.15 Stepper Motor Structural Diagram .. 38

Figure 2.16 Stepper Motor Structural Section .. 38

Figure 2.17 Permanent magnet pole placement in Stepper Motor 39

Figure 2.18 Divided Stepper Motor by type of stator ... 40

Figure 2.19 Stepper Motor type of stator Bipolar and Unipolar 41

Figure 2.20 Details of Stepper Motor specification. ... 42

Figure 2.21 Meaning of the model name of a stepper motor. ... 42

Figure 2.22 Stepper Motor structure picture ... 43

Figure 2.23 Working Diagram of Stepping Motor ... 43

Figure 2.24 Power supply single coils of Stepper Motor at a time 44

Figure 2.25 Power supply to two coils of Stepper Motor at a time 44

Figure 2.26 Power supply in Micro Step Mode graph .. 46

Figure 2.27 Power input to various stepping motors. ... 48

Figure 2.28 Stepper motor driver with Microcontroller and Stepper Motor wiring

diagram schematic type Common-Anode Connection ... 49

(10)

List of Figures (Continued)
Page

Figure 2.29 Stepper motor driver with Microcontroller and Stepper Motor wiring

diagram schematic Common-Cathode Connection .. 50

Figure 2.30 Rotary encoder .. 51

Figure 2.31 Structure of the rotary encoder type Absolute Rotary Encoder 51

Figure 2.32 Structure of the rotary encoder type Incremental Rotary Encoder 52

Figure 2.33 Keyes Knob Rotary Encoder Schematic ... 53

Figure 2.34 Keyes Knob Rotary Encoder Direction and Signal Transformation Format

 .. 53

Figure 2.35 MATLAB M-file functions ... 56

Figure 2.36 MATLAB display it on the Graphic Windows ... 57

Figure 2.37 SolidWorks program is a drawing Robotic 3-D Model 58

Figure 2.38 Arduino Microcontroller Board ... 60

Figure 2.39 Arduino Desktop IDE program ... 61

Figure 2.40 Arduino Online IDE program .. 61

Figure 2.41 Arduino IDE program menu bar contains ... 62

Figure 2.42 Arduino IDE program File menu .. 63

Figure 2.43 Arduino IDE program Edit menu .. 65

Figure 2.44 Arduino IDE program Sketch menu .. 66

Figure 2.45 Arduino IDE program Tools menu ... 67

Figure 2.46 Arduino IDE program Help menu ... 68

Figure 2.47 Arduino IDE Program Shortcut menu ... 69

Figure 2.48 Arduino IDE Program Serial Monitor window appearance 69

Figure 2.49 Arduino IDE Program Serial Plotter window appearance 70

Figure 2.50 Selecting the type of Arduino board connected .. 70

Figure 2.51 Arduino comport selection window .. 71

Figure 2.52 Sample code for testing uploading program into board Arduino 71

Figure 2.53 shows that the program has been successfully uploaded 72

Figure 2.54 The programming screen and the display screen .. 74

Figure 2.55 Block Diagram of LabVIEW Program .. 76

Figure 2.56 Block Diagram generated from LabVIEW Program 76

(11)

List of Figures (Continued)
Page

Figure 2.57 LabVIEW Program front panel ... 77

Figure 2.58 Objects on the Front Panel of LabVIEW .. 78

Figure 2.59 Controls Palette used in Front Panel design .. 79

Figure 2.60 Tools Palette used to design the Front Panel.2.4 Block Diagram 79

Figure 2.61 Example Block Diagram ... 80

Figure 2.62 NI Vision Development Module ... 80

Figure 2.63 NI-VISA Drivers Software .. 82

Figure 2.64 JKI VI Package Manager (VIPM) ... 82

Figure 2.65 LabVIEW Interface for Arduino (LIFA) Software 83

Figure 3.1 The structure 3 DOF Parallel robot ... 85

Figure 3.2 Section view of Robot structure (a) Top View (b) assembly Section 85

Figure 3.3 Parallel Robot structure (c) Bottom View (d) Side View 85

Figure 3.4 The Component of Parallel robot .. 86

Figure 3.5 Parallel robot mechanism diagram. ... 87

Figure 3.6 Interface of control system architecture .. 89

Figure 3.7 Parallel Robot control system schematic ... 90

Figure 3.8 Workflow of the Parallel Robot control process ... 90

Figure 3.9 A parallel robot mechanism connects all three motors with a microcontroller,

camera view and delivery system. .. 91

Figure 3.10 The projection of the parallel robot kinematic .. 94

Figure 4.1 The Parallel-Robot. Manipulator simulation parameters 97

Figure 4.2 Scenario1, Setup parameter for z1 simulation and analyzed for [z1, z2, R] . 98

Figure 4.3 Simulation 3D model of Maximize of lower-level workspace of z1, in

Scenario1, ... 99

Figure 4.4 Simulation of Maximize of trajectory tracking workspace graphs of z1, in

Scenario1, ... 100

Figure 4.5 Scenario2, Setup parameter for z2 simulation and analyzed for [z1, z2, R] 101

Figure 4.6 Simulation 3D model of Maximize of Upper-level workspace of z2, in

Scenario2 .. 102

(12)

List of Figures (Continued)
Page

Figure 4.7 Simulation model of Maximize of trajectory tracking workspace graphs of

z2, in Scenario2, .. 102

Figure 4.8 Scenario3, Setup parameter for R simulation and analyzed for [z1, z2, R] 104

Figure 4.9 Simulation 3D model of Maximize of radius workspace of x-axis, and y-axis,

in Scenario3 .. 104

Figure 4.10 Simulation of Maximize of trajectory tracking workspace graphs of x-axis,

and y-axis, in Scenario3, ... 105

Figure 4.11 Scenario4, Setup parameter for x-axis, y-axis and z-axis simulation and

analyzed for [z1, z2, R] = [-200, 150, 250] (mm) ... 106

Figure 4.12 Simulation 3D model of Maximize of radius workspace of x-axis, y-axis,

and z-axis, in Scenario4 for [z1, z2, R] = [-200, 150, 250] (mm) 107

Figure 4.13 Simulation model of Maximize workspace of x x-axis, y-axis and z-axis, in

Scenario4 .. 107

Figure 4.14 Experimental process step of Parallel Robot ... 109

Figure 4.15 The simulation results 3D Model for [x, y, z] = [0, 0, -411], [0, 0, -561],

[0, 0, -311] .. 111

Figure 4.16 Simulation model of Trajectory Tracking results graphs for [x, y, z] = [0,

0, -411], [0, 0, -561], [0, 0, -311] ... 111

 ... 114

 ... 114

 ... 115

Figure 4.20 (a), (b) Front Panel of LabVIEW Vision show Object color matching and

Gain detection ... 117

Figure 4. 21 (c), (d) Front Panel of LabVIEW Vision show Object Blue color matching

and Gain detection .. 118

Figure 4.22 (e), (f) Front Panel of LabVIEW Vision show Object Yellow color 119

Figure 4.23 (g), (h) Front Panel of LabVIEW Vision show Object Red color matching

and Gain detection .. 120

13

CHAPTER1

INTRODUCTION

In the field of research, theoretical information on robot selection and automated

systems. Theoretical research on basic kinematics of robots. Learn about the capabilities

of using robots in a variety of workflows suitable for manufacturing. There are five

research methods: one is to study the theory of Homogeneous coordination transformers,

the other is to study the theory of Mathematical description of the target, the third is to

study the theory of Relative transformation in workspace, and the fourth is to study the

theory of Transformations along kinematic chains. Fifth, study the theory of Destination

kinematics of robot.

1.1 Study Background
In the past the functionality of the robot continues to evolve as innovation

progresses. At the same time, the global manufacturing sector is increasingly adopting

robots in their work processes. And the demand for robots is likely to increase

exponentially. and is expected to expand above the growth rate of global demand. [1 - 3]

Robots have played a huge role in the transformation of production systems. It

also helps to improve the smooth production of goods and services in factories, shops or

establishments. precise Including reducing the process and increasing the speed of the

production process throughout the supply chain. Reduce the cost of operators enhance

consumer satisfaction and increase the productivity of the overall economy [1 - 3]

Robots and automation are similar in terms of automation machines. Robots can be called

a part of automation because they have similar components and functions. But robots can

operate from decision-making programs and can be programmed to perform multiple

tasks. which automation cannot do. The elements that can be clearly demonstrated for the

robot are the components of the robot control system, consists of three main interrelated

components: a programmer or device designed to input commands from a controller or

user, designed to input and process commands via a controller or component designed to

receive user commands. In order to continue to control or operate the robot, the

14

manipulator (referred to simply as the "robot body") executes the instructions processed

by the part that receives the user's command. [1 - 3]

Humans develop various forms of production. for a long time from the

manufacture of parts by hand, fabrication of belts, until now most of the production is

carried out with robots. The innovations that occur are not for human work. but to

encourage people to work more conveniently and focus on working in an easier way

It can be said that today's robots are only a small first step in the work of humanity. But

it is an important step in the manufacturing industry. Humans are entering a new industrial

revolution. that will be fully automated soon. [1 - 3]

For the production of industrial plants today Automation and robotics have been

introduced into some production lines to replace the overload of human operations, reduce

waste, and increase accuracy in picking and inspection of workpieces. to reduce

production time and increase productivity by producing quality superior to traditional

production that uses only human labor [1 - 3], such as the inspection process for defects

of the workpiece and sorting workpieces according to appearance, color, and size.

Visually inspecting workpieces is still limited by speed. The precision and use of the

human eye to perform such tasks can lead to distortion. Therefore, in order to achieve the

perfect workpiece as specified by the conditions the use of automation or robots for

workpiece flaw inspection and sorting workpieces according to appearance, color, and

size, is able to meet the requirements for the development of industrial production [1 - 3].

Based on this problem, this study proposes a technique that enables computer vision to

detect color and size differences of target objects. And use the new prototype parallel

robot. Based on the data obtained from the robot simulation kinematics, the dimensions

of the prototype robot are designed so that the robot can move within the desired work

area. And a robotic arm control system was developed to pick up objects and place them

at specific locations. The image processing system uses the NI LabVIEW program [4 -9]

to identify the attributes of color and size differences of the target object, and uses the

image processing method to identify and process instructions. Then send the control

signal to the Arduino Uno microcontroller, which is the main control board that controls

15

the movement of the parallel robotic arm and the stepper motor. Use 3 sets of controllers

to control the robotic arm to move it to the designated position and pick up the target

object and place it at the desired position. The NI LabVIEW program adopts the data

transmission format connected to the computer through the serial port, which can send

and receive program running data and display the results through the computer to control

analog and digital operations. And developed more software to more conveniently

communicate with the microcontroller and control the operation [4 - 9]

For the simulation and analysis of the working area of parallel robots, the

kinematic robotic theory is used to determine the size of the robot suitable for the desired

working area. In this research, a kinematic simulation technique is presented. Using

MATLAB program to simulate and analyze the workspace model of the alignment robot.

and trajectories for dimensional analysis of the main components of the robot structure.

to be used as information to create a parallel robot new prototype to get a robot of the

right size for the experiment the purpose of selecting parallel robots for This research is

due to the fact that parallel robots are robots used for pick and place tasks in industrial

factories. This is a little robot. By designing a parallel robot mechanism and analyzing

the workspace with the kinematics of robot theory [18, 19], the robot arm can be moved

rapidly.

Computer simulations are an important step. In the analysis and design of

control systems, especially industrial systems in analyzing and designing dynamic

systems, we need to know their behavior. and various factors of the system that affect the

operation, such as the time response and frequency response If there is a mathematical

model of the system, then we can know the behavior of the system can be simulated by a

computer. [18, 19],

In addition, the study of the dynamic system model can be divided into 2 main areas,

namely the ease of modeling and the accuracy of the modeling system. If we want a very

accurate model Modeling may be must be complex. The model will have uncomplicated

structure

16

A linear system is a system in which the relationship between the signal and the

output obeys the law of superposition, i.e. the response of multiple inputs. is equal to the

sum of the responses from each input signal.

A time-independent system is a system in which the response from the input signal is

delayed. is equal to the output delay. from being triggered by the original input without

delay Linear and time-invariant systems It is a linear system that describes its behavior

by a linear ordinary differential equation with constant coefficients.

 A non-linear system is a system in which the superposition laws

(superposition) is not applicable, i.e. the response from multiple input signals. The signal

is not equal to the sum of the responses from each input signal. An example of a nonlinear

system

For this experiment computer program used for calculations Including the

program MATLAB/Simulink which has a simple and clear display tool Users can easily

and flexibly interact with the program. MATLAB/Simulink [18, 19], It greatly reduces

the burden of program development. Especially in learning numerical methods. and

writing programs to perform computations (such as solving differential equations),

allowing us to concentrate fully on the analysis and design of the control system. There

is also a user interface that is easy to use and fast.

 1.1.1 Benefits of Automation (Automation) [1 - 4]

 1.1.1.1 Reduce operating costs, depending on the task, robots can

replace 3-5 humans, in addition to saving labor costs. also save energy Public utilities in

production, such as working in factories, workers have to turn on the air conditioner in

case the temperature is too high inside the factory. therefore, causing additional expenses

but if using robots in factories, there is no need to turn on the air conditioning because the

robots can work at higher temperatures than humans. Therefore, the use of robots reduces

operating costs and consumable materials.

 1.1.1.2 Increased productivity, Robot can run at a constant speed

unattended 24/7. That means have more productivity potential. Resulting in increased

work productivity than the use of workers in production Because workers cannot work

17

24 hours a day, workers must take breaks. Unlike robots that can do it all the time

 1.1.1.3 Better planning, Consistent production by robots helps shops

reliably predict time and costs. Such predictability allows most projects to be more

rigorous. And make the company's productivity meet the expected goals.

 1.1.1.4 Consistency, production of parts and better quality,

Automation generally runs the production process with less variance than workers. As a

result, productivity from automated systems is efficient. There is more control over the

quality of the product and more consistency than manual labor.

 1.1.1.5 Improve labor safety, Automation takes workers out of

dangerous jobs. The system uses machines to work instead of humans, such as handling

hazardous materials. Working in extreme temperatures and moving heavy materials

which if workers do it may cause danger and injury Using machines to help make factory

employees safe. and reduce accidents in the workplace as well

1.2 Statement of the Problem
Parallel robot the motion of the robot is not linear, so it is difficult to control the

robot. And it is a multi-joint robot, all the end joints of the robot are connected in a closed

system. Make the solution endless. Therefore, it is important to be able to understand the

robot's motion patterns and limitations when designing the robot's structure and control

system. And must be able to design robots and control systems. In this study, a parallel

robot design is presented using mathematical calculations and using MATLAB

simulation program to show the boundaries of the robot's motion patterns. [18, 19], used

to compare with the data reflecting the movement of the robot from the actual experiment.

Collect the data of the actual experiment of the parallel robot prototype, and display the

motion results of the robot through the C++ Arduino IDE program, It will be helpful to

show the extent of the robot's real workspace and compare it with the simulation results

of the robot's motion. The limitation of Parallel Robot is that the working area is relatively

limited, obstacles cannot be bypassed, the work is relatively difficult, and multiple

solutions can be derived. This study presents a synthesis of the optimal structural space

18

of a Parallel robot when determining the required workspace by finding the optimal

relationship between the various structural spaces. of the Parallel robot which defines the

working area to be in basic geometry to determine the size and installation of the parts of

the Parallel robot that are suitable for a given work area.

The robot control system is usually responsible for Machin Vision detection.

Motor driving and movement require complex algorithms the design of these complex

systems still requires a lot of experience in remote teaching. Knowledge, expertise, and

understanding of its application and technology suitable for the industrial environment.

Due to the imperfection of parts used in the manufacture of robots, mechanical arms.

Errors generally occur during operations and can damage the production process. This is

more serious when robotic robots are used for precision applications.

The parallel robot design is powered by three Stepper motors using Forward Kinematics

and Inverse Kinematic equations as mathematical models. Design and assemble the parts

and use Ni Vision Builder to separate the objects. and using a microcontroller control

system to control the robot the movement of the robot depends on the efficiency of the

motor and the material of the robot parts.

Experimental use of a three-legged robot from the design and assembly of a

robot body was tested on the movement of a robot using three Steeper motors to move

the arm's triangular plates. The mover moves to the specified position along the x, y, and

z axes, both positive and negative.

This project focuses on the color separation of the workpieces using the camera system

and the program. for use in real-time display and recording what is needed in the system

is a balance system to get a still image There is no oscillation and it is a system that allows

the robot to maintain its motion characteristics. This research will study the Parallel Robot

balancing system to enable the robot to function more efficiently and be able to move as

we want.

19

1.3 Purpose of the Study
1.3.1 Develop a MATLAB/GUI program for designing a simulation program

for the orientation of the Parallel robotic arm according to the coordinates and paths of

the robot orientation workspace model, and the simulation case results can be used to

analyze the robotic arm structure model.

1.3.2 Development of Machine Vision System using Ni Vision LabVIEW

program to detect objects with different colors and send a signal to the microcontroller

control system as a signal to control the robot

1.3.3 Design a prototype parallel robot based on a robot kinematic simulation

model and design a robot control system using a microcontroller for automation in

conjunction with a machine vision system.

1.3.4 To compare the results of simulations and experiments in order to analyze

the results for deficiencies in order to develop a prototype parallel robot that is suitable

for use in the industrial sector.

1.4 Research Questions and Hypothesis
1.4.1 The simulation of the parallel robotic arm orientation according to the

coordinate point and the robot orientation model path by MATLAB/GUI program is

effective according to the results of robotic kinematic calculations and the simulation

results can be used for analyzing and designing the prototype of the robotic arm.

1.4.2 Ni Vision LabVIEW is a specification-compliant program for detecting

objects of different colors and is compatible with microcontroller control systems.

 1.4.3 The prototype parallel robot has a performance model in the workspace

that conforms to the pattern obtained from the program MATLAB kinematics of robotic

simulation results with good compatibility control with the microcontroller control

system.

1.5 Theoretical Perspective
 This thesis uses the fundamental theories concerned with the DH Parameters for

Simulation, and calculation, of the kinematics of the Robot and applies geometry to the

study of the movement of multi-degree-of-freedom kinematic chains that form the

20

structure of robotic systems.

 1.5.1 Forward Kinematics Solution,

 1.5.2 Inverse Kinematics Solution,

1.6 Delimitations and Limitations
 1.6.1 Using a type of robotic arm Parallel Arm (Parallelogram)

 1.6.2 Using Arduino as a controller robotic arm

 1.6.3 Use LabVIEW program as User Interface

 1.6.4 Use MATLAB program for Robotic Kinematic simulation to find a

workspace model of the robot.

1.7 Significance of Study
 This it aims to develop programs and kits that are commonly used in industrial

applications for parallel robots with low-cost and performance functions that are suitable

for the needs of small and medium-sized industrial plants.

21

CHAPTER2

REVIEW OF THE LITERATURE

2.1 Industrial Robotic
An industrial robot is a robot that has a structure similar to the human body,

with a waist, elbow, arm and wrist. The term mechanical arm refers to the arm of an

industrial robot. [10], industrial robot design It is an application of engineering in many

different fields, including mechanical engineering and industrial engineering. To design

and build a robot with a mechanical structure connected to each other and choose

materials to be strong and durable. electrical engineering to choose the type of motor and

power supply to the motor and electronic engineering. To connect the hardware and

software to the microcontroller or PLC and the robot to control the movement of the robot.

As shown in Figure 2.1

Figure 2.1 Comparison picture of an industrial robot's arm and a human body

 Types of industrial robots Classification by Arm Motion, Industrial robots are

another type of automatic machine designed and built to replace people in various

production processes. or used to help in the production process in a way that robots work

with people. The robots that are created have many types depending on the nature of the

work that needs to be applied. For industrial robots, it can be divided According to the

22

nature of work, there are 6 types as follows: Cartesian Robot, Cylindrical Robot, Polar

Coordinate Robot, Scalar Robot, Articulate Robot, Parallel link Robot. There will be

differences like movement and the ability to work differently. Including different

applications, but all built on the same basic principles. [10],

 2.1.1 Cartesian Coordinate Robot is a robot that has a working area in the

manner, the cuboid has a joint movement of the X-axis, Y-axis, and Z-axis sliding

(prismatic; P), also known as PPP robots, so it is easy to program. with precise resolution

in high work, used in picking and placing workpieces Assemble the CNC machine

workpiece and welding work, as shown in Figure 2.2

Figure 2.2 Cartesian Robot Manipulator

 2.1.1.1 Strength

 1) Move in a straight line in all 3 dimensions.

 2) The movement can be easily understood.

 3) Simple components

 4) Strong structure throughout the movement

 2.1.1.2 Weakness

 1) Need a lot of installation space

 2) Area where the robot can work is smaller than the size of robot

 3) The object cannot be reached from the southward direction.

23

 4) The linear axis will Seal to prevent dust and liquid difficult.

 2.1.1.3 Applications, because the structure is strong along the

movement Therefore, it is suitable for moving heavy objects. or called work Pick-and-

Place, for example, used to load workpieces into the machine (Machine loading), used to

store workpieces (Stacking), can also be used in assembly work that does not require

access in a rotating manner such as assembling electronic equipment and Test work

 2.1.2 Spherical Robot or Polar Robot is a robot that has two joints,

Rotary (Revolute; R) and 1 joint is Prismatic; P) with 2 axis of rotation and 1 axis of

motion, known as RPR robot. It is commonly used in handling, lifting or moving things.

Electric welding and gas welding as shown in Figure 2.3

Figure 2.3 Spherical Robot Manipulator

 2.1.2.1 Strength

 1) More working volume due to the rotation of the 2nd

 (shoulder) axis.

 2) Be able to bend down to grip the workpiece on the floor

conveniently.

 2.1.2.2 Weakness

 1) There is a coordinate system and complex components.

 2) Movement and control systems become more complex.

 2.1.2.3 Applications, used in work with a little vertical movement

24

(Vertical), such as loading workpieces into and out of the press or may be used for spot

welding.

 2.1.3 Cylindrical Robot is a robot with 2 joints, sliding joints and 1 joint is a

rotating type, known as the RPP robot, causing the working area to be cylindrical,

commonly used in assembly work, spot welding, as shown in Figure 2.4

Figure 2.4 Cylindrical Robot Manipulator

 2.1.3.1 Strength

 1) There are simple components.

 2) The movement can be easily understood.

3) Able to access machines that are open-closed or enter into

areas that are channels or holes easily (Loading), such as

loading workpieces into CNC machines.

 2.1.3.2 Weakness

 1) Limited working space

 2) The linear axis is difficult to seal to prevent dust and liquid.

 2.1.3.3 Applications, It is generally used to pick up workpieces. (Pick-

and-Place) or feed the workpiece into the machine. because it can easily move in and out

of the area that is a small cavity

25

 2.1.4 SCARA Robot is a robot that rotates 2 parallel axes and moves 1 axis,

known as RRP robot, used to pick and place objects. assembly work and machine tools

as shown in Figure 2.5

Figure 2.5 SACARA Robot Manipulator

 2.1.4.1 Strength

 1) can move in a horizontal plane and go up and down quickly

 2) High precision

 2.1.4.2 Weakness

 1) Limited working space

 2) Can't rotate in various angles

 3) Able to lift weights (Payload) not much

 2.1.4.3 Applications, Because of its horizontal movement and fast up

and down, it is suitable for electronic assembly work. Which requires speed and

movement does not require much rotation. But will not be suitable for mechanical part

assembly, which most of the assembly will rely on rotation in various angles. In addition,

SCARA Robot is also suitable for inspection and packaging.

 2.1.5 Articulated Robot (Joint Arm Robot) is a robot that consists of rotating

26

joints. The work of various joints is similar to the work of humans by the various joints,

including the waist (Waist), shoulder (Shoulder), elbow (Elbow) and joints. Hand (Wrist),

known as Robot 6R, can move up and down. and on their own side

It is more commonly used in industrial plants than other types because it is strong. and is

highly flexible in work but the cost of production is high. It also requires a complex

control system. As shown in Figure 2.6

Figure 2.6 Articulated Robot Manipulator

 2.1.5.1 Strength

1) Since every axis will move in a manner of rotation makes

it highly flexible in accessing various points

2) The joint area can be sealed to prevent dust, moisture or

water easily.

 3) There is a lot of working space.

 4) Able to access the workpiece from both top and bottom

 5) Suitable for electric motor use as a propulsion unit

 2.1.5.2 Weakness

 1) There is a complex coordinate system.

2) Movement and cleaning control system more difficult to

understand

 3) Difficult to control to move in a straight line (Linear)

27

4) The structure is unstable throughout the movement range.

Because at the edge of the Work Envelope, the forearm

will

 5) There is a vibration, causing the accuracy to decrease.

 2.1.5.3 Applications, This type of robot can be used widely because it

can reach various positions well, such as spot welding, path welding, lifting, cutting,

gluing, work with difficult movements such as painting and sealing.

 2.1.6 Parallel Robot or Delta Robot, Parallel Robot It's a closed mechanical

chain. It consists of a plate base and is sandwiched by an end effector plate on top, by

means of a sliding rod-driven connecting rod of 6 through a universal joint, which the

extension rod will only recognize compression or elongation without bending. as shown

in Figure 2.7

Figure 2.7 Parallel Robot Manipulator

 2.1.6.1 Strength

 1) high strength because it is a closed structure

2) High precision because the tip of the arm reaches all power

sources at the fast-moving base.

3) because most of the mass is at the base Therefore, the

28

forearm has a small mass

4) can exert a lot of force because all the power sources help

each other to exert themselves.

 2.1.6.2 Weakness

 1) narrow working space

 2) Complicated in controlling calculations

 2.1.6.3 Applications, this increases the accuracy of the working

position. And the structure is lightweight Triangle Robot It is commonly used in factory

packaging. Medical and medicine that can work quite quickly

 2.1.7 Kinematics and dynamics Kinematics and dynamics Details are as follows

 2.1.7.1. Kinematics is the study of the movement of mechanical parts

by the influence of force and mass on motion is not considered. Therefore, the kinetics

are related to the region area. Amount of velocity and acceleration obtained by motion

 2.1.7.2. Kinetics is the study of the action of forces causing mechanical

parts moving which will also be caused by the influence of gravity [10, 12 – 17],

 2.1.7.3 Dynamic is a combination of kinetics and kinetics, so

Mechanical dynamics deals with both balanced and unbalanced forces acting on the

mechanical part, taking into account the mass and acceleration of the mechanical part. As

well as external forces [10, 12 – 17],

 2.1.8 Degrees of Freedom, the degree of freedom of the system (DOF) is the

amount of motion of the rigid body in the area of movement of the rigid Rigid Body.

There are 3 types: [10, 12 – 17],

 2.1.8.1 Prismatic or Translational Motion, A rigid body can move in

1 axis, 2 axes or 3 axes as shown in Figure 2.8 and is described by the name of the ship,

namely

 1) Throw (Heave) is a vertical linear motion (up/down).

 2) Swaying (Sway) is a lateral path movement. (from side to side)

3) Surge is a horizontal linear motion. (forward/backward)

29

Figure 2.8 Degrees of Freedom Chart

 2.1.8.2 Rotational motion, A rigid body can move and rotate in 1, 2

or 3 axes as shown in Figure 2.2 (a) and is described by the name of the ship, namely

 1) Roll is the movement around the horizontal axis.

 2) Pitch is a rotation around the diagonal axis.

 3) Yaw is the movement around the vertical axis.

As shown in Figure 2.9

Figure 2.9 Rotational 3 DOF motion

 Figure 2.8 and Figure 2.9 Rigid body exhibits sliding motion (along the X, Y

and Z axes). There are 3 DOF, and rotational motion (around X, Y, and Z axes) has 3

DOF. If the rigid body has a combined motion, it has 6 degrees of freedom (6 DOF).

30

Note: • A body object in a two-dimensional plane (2D) has 3 DOF, i.e. it moves along the

x-axis and y-axis and rotates.

 A rigid body in the 3D plane has 6 DOF, i.e., moves along the x, y, and

z axes and rotates around the x, y, and z axes, as shown in Figure 2.10

(a) 2D Rigid Body have 3 DOF (b) 3D Rigid Body have 6 DOF

Figure 2.10 3-DOF of objects in 2D and 3D planes

 2 . 1 . 8. 3 Both movements are combined (complex motion). It is a

simultaneous rotational and sliding movement. The reference point on an object changes

its position both linearly and angularly. And the paths on the waypoints are not parallel,

and all centers of rotation are continually shifting.

2.1.9 Robot components, in one robot consists of many different devices and

parts, each of which has different functions according to its characteristics. and purpose

of use Selection of equipment and parts Therefore, knowledge, understanding and

suitability are required. So that the robot can work efficiently, fast, durable and save

energy. The robot is divided into four major components: Mechanical devices, Actuator,

Electrical or electronic equipment and Control device (controller)

 Mechanical devices, the structure of the robot can be divided into two main

parts: the body and the arms. and wrist. Most of the torso and arms have 3 levels of

31

freedom, and in the wrist, there are 2-3 levels of freedom at the end of the wrist is an

object that relates to the work that the robot has to do. For example, an object may be a

workpiece that needs to be loaded into a machine, or it may be a tool that the robot needs

to use in a certain production process. The robot's body and arms are used to provide

accurate alignment of the object. and the wrist part the robot is used to orient the objects

in order to position them. The body and arms of the robot must be able to move objects

in the following 3 directions:

 1) Vertical movement (Movement in Z axis)

 2) Radial motion (in/out or movement in the Y axis)

 3) Movement from left to right (moving in the X axis)

 There are several ways to enable the robot to move in the above manner.

depending with the types of joints used to build the robot's body and arm. which will be

discussed in detail later. in order to cause proper alignment of objects We can define 3

degrees of freedom for the robot's wrist as the following example is one of the robot's

wrist assembly patterns. to create a 3 degree of freedom

 1) Roll This degree of freedom is achieved by using a T-joint to rotate an object.

around the axis of the arm

 2) Pitch related to the up-down rotation of the measuring instrument R type joint

(Rotational Joint)

 3) Yaw related to the left-right rotation of the object which can be done by using

the R-type joint (Rotaximetal Jetset).

 When considering the use of robots to assist in the production process, the nature

of the work, the area, and the environment must be taken into account because the robot

is a part that must be used in the work process all the time. The different job characteristics

will indicate the size of the robot's structure. But the nature of the structure will have the

same structure. The difference is only in the nature of the design. The key structure is

designed to consist of the arm part or 'Link' and the joint part or 'Joint'.

 2.1.9.1 Links, Link is the structure of the robotic arm. It is responsible

for entering the working area. The length of the Link will indicate the performance of the

robot. and the ability to enter the working area with Articulate Robot Industrial Robot has

2 links as follows. [10, 12-17]

32

1) Upper Link or Upper Link is the portion of the upper arm

that enters the working area. And it is a part that connects

to the Robot Hand wrist for installing the Robot Tool.

2) Lower Link or Lower Link is the part of the arm that is

responsible for all the weight that occurs of the entire

robot. It is the part that supports the weight of the upper

arm and is connected to the base of the robot.

Figure 2.11 Structure of Link or the robot's arm

Table 2.1 Comparison table between link structure of robot and human arm

Robot Human Arm

1. Robot Base 1. Waist

2. Lower arm (Lower Link) 2. The part of the forearm from the

 shoulder to the elbow.

Robot Human Arm

3. Upper Arm (Upper Link) 3. The part of the forearm from the elbow

 to the wrist.

4. Robot Hand 4. The part from the wrist to the middle

 of the palm.

5. Robot Tools 5. Finger

33

 2.1.9.2 Joints, Joint is the structure of the robot, the joint that acts as a

connection between the link of the robot and also serves to move the robot to be able to

move to different positions. What we want, that is, when we program the robot to move,

is to program the Joint or all joints of the robot. That means that the joint part is the part

where the servo motor is installed. Normally, an articulate robot type industrial robot has

6 joints or sometimes people in the robot control industry. It is often referred to as a

6-axis robot [10, 12-17] as shown in Figure 2.12

Figure 2.12 Joint of the robot and its name

From Figure 2.12 shows the joints or joints of the robot, which are all 6 joints

together, with names and functions of each joint and can be compared to human arms as

shown in Table 2.2

34

Table 2.2 Names and functions of each Joint and comparison with human arm

Robots Compared to
Humans Axis or Joint No. Name Description

Axis 1 or Joint 1 S Rotation of the complete

lumbar manipulator

waist

Axis 2 or Joint 2 L Forward and reverse

movement the lower arm.

shoulder

Axis 3 or Joint 3 U U Vertical movement of the

upper arm.

elbow

Axis 4 or Joint 4 R R Rotation of the complete wrist

centre.

The part that

rotates the upper

arm to the wrist

Axis 5 or Joint 5 B B Bending of wrist around the

wrist centre.

wrist part

Axis 6 or Joint 6 T T Rotation of mounting flange

(turn disc)

wrist swivel

 1) joints classified by Mobility

(1) Active joint is the joint where the plant is being

installed. able to control movement

(2) Passive joint is a joint that does not have an

installed tree. inability to control movement the

movement follows the movement of other

joints that are linked to each other.

 2) joints classified by movement patterns

(1) Revolute joint is a joint that can rotate (1

degree of freedom).

(2) Prismatic joint is a joint that moves in and out

along a line (1 degree of freedom).

(3) Screw joint is a joint that rotates and moves in

and out relative to each other (1 degree of

35

freedom)

(4) Spherical joint is a joint that can rotate around

(2 degrees of freedom).

Figure 2.13 Various joints of robot

 2.1.9.3 base is the first fixed link.

2.1.9.4 wrist is a joint that does not cause movement in three

dimensions but causes rotation It is often placed as

the last joint on the forearm.

2.1.9.5 end-effector is a device that is installed at the forearm

to use for work may be a handle Vacuum suction,

drill, etc.

2.2 Parallel Robot
Parallel robot was developed by Raymond clavel, [19, - 22], studied and prototyped in

1980 as a parallel robot as shown in Figure 2.11 by Ramon clavel's mechanical arm

developed. It is a robot with four degrees of freedom (Degree of freedoms), with three

degrees of sliding. (Translation) and one degree of freedom of rotation (Rotation). This

development was awarded by Ramon Clavel in 1990. The robot was then used in the

packaging industry as the first due to properties of the parallel arm with precision and

36

high speed. In addition, plus the delta, the puppet is symmetrical between the three arms.

As a result, the robot is convenient to use.

 Parallel Robot or Delta Robot has its strengths in speed, accuracy, and

robustness, with the sensor and vision system components built into the robot arm for

extremely accurate handling and placement of moving objects. The Parallel Robot is

therefore suitable for industries were goods flow along the conveyor belt. with a

disorganized appearance or as we often call it, laid out directionless, formless,

lightweight, bulky in conveyor belts. That comes with high speed, such characteristics

are food, confectionery, medicine, cosmetics, consumer goods, electronics, auto parts,

materials that are packaged in various packages, etc.

In general, a Parallel robot has a three-legged spider-like structure that is the same size.

(end-effector) All arms are mounted on the circle circumference of the stationary base.

And each arm is mounted at an angle of 120 degrees to each other,

Figure 2.14 Sample of Parallel Robot

2.3 Stepping Motor
 Stepping Motor It is a type of electric motor that is used to control the rotation

to set the position and direction by angle of the mechanism of the machine that requires

high precision, such as control systems in robots, printers, conveyor belts in factories,

etc., which rely on It works by using a square wave electrical signal (Pulse) to drive the

motor so that the axis of rotation is non-continuous, but will drive step by step by being

37

able to rotate around the axis 360 degrees, causing the mechanism to move the axis at a

low speed. and maintain torque instantly without damaging the motor. Depending on the

motor structure of each person as well [21, 22],

 Stepping motors Terminology PHASE is the part of the coil. Between the end

of the cable and the CENTER TAP or both coils if there is no CENTER TAP, Phase

Angle refers to the number of degrees caused by rotation in each step, FULL STEP

MODE means FULL STEP rotation, i.e. rotation of each step will get angle equal to Phase

Angle, HALF STEP MODE is a HALF STEP rotation. Each step rotation will have an

angle of Half of Phase Angle

 2.3.1 Stepper Motor Components

 Stator is the part attached to the body of the motor. It is a magnetic pole with a

small tooth tip wrapped with a coil to induce a change in the magnetic field.

 Rotor is a pack of permanent magnets. It looks like a gear with teeth to be sucked

in to match the teeth of the stator. This rotor is attached to the spindle to be used as needed.

With this stepper motor has a large number of teeth. making it able to move in small steps

 The working principle is the same as the DC motor. Is to supply electricity into

the coil to change into a magnetic field. Then the magnet at the rotor core will be attracted

to the coil. Equal to 1 Step moving motor. Example as shown in the picture below. For

example, a motor with 8 Stator Coils and 6 Rotor Poles.

 As already explained that the components are similar to ordinary DC motors. as

shown Figure 2.15

38

Figure 2.15 Stepper Motor Structural Diagram

 Stator is the part attached to the body of the motor. It is a magnetic pole with a

small tooth tip wrapped with a coil to induce a change in the magnetic field.

 Rotor is a pack of permanent magnets. It looks like a gear with teeth to be sucked

in to match the teeth of the stator. This rotor is attached to the spindle to be used as needed.

With this stepper motor has a large number of teeth. making it able to move in small steps

Figure 2.16 Stepper Motor Structural Section

39

Figure 2.17 Permanent magnet pole placement in Stepper Motor

2.3.2 Type of stepper motor

 2.3.2.1 Divided by structure

1) Variable reluctance stepper motors the structure of the

motor consists of a steel rotor that will be attracted to the

stator when the stator receives an electric magnetic field.

(The temporary magnet generated by the coil attracts the

iron core itself.)

2) Permanent magnet stepper motors the motor structure has

a permanent magnet rotor. which will attract or push

against the stator according to the pulse supplied

3) Hybrid synchronous stepper motor the motor structure is

a combination of Variable and Permanent.

 2.3.2.2 Divided by type of stator

1) Bipolar Stepper Motor This type of motor has no Common

Wire coil attached to the stator, making the design of the

drive circuit quite complicated. MCU must be used to help

and H-Bridge circuit can be used to drive.

2) Unipolar Stepper Motor (also known as 4-Phase) The

stator winding of this type of motor has a Common Wire

for use as Common Ground or Common Power. This type

of motor can be easily built to drive circuits. easy to use

40

which must supply electricity (or connect to GND) to

Common all the time and supply power to various coils to

complete the cycle This unipolar stepper motor is divided

into several types: 5-Wire type with 5 wires, Common of

both sets of coils connected together as a single line, 6-

Wire type with 6 wires, Common of each set separately

(As shown in example Figure 2.17 below) and 8-Wire is

that each coil uses its own separate Common.

Figure 2.18 Divided Stepper Motor by type of stator

Figure 2.19 Stepper Motor type of stator Bipolar and Unipolar

41

 2.3.3 Stepping motor selection

various industries That require high precision in terms of the position of the workpiece

movement often have a stepping motor in the production process. which if do not know

how to choose the correct purchase the output may not be as efficient as it should be. So

how to choose Stepping motors to suit the job description is as follows.

 2.3.3.1 The number of phases of the motor: consider the work that we

will use to see what type you want, such as 2 Phase, or 5 Phase.

 2.3.3.2 Size of the motor (Size): The size of the motor that we will use

is based on the size of the area that we will install.

 2.3.3.3 Current that the motor uses: You should know the current value

that the motor that we will choose to use can be used with how much current.

 2.3.3.4 Motor resolution (degrees): It is a very important part when

choosing a stepping motor. This degree indicates the resolution and accuracy of the work

position.

 2.3.3.5 Motor Torque: Torque is as important as the angle of

movement of the motor. Torque value or torque is important when using a motor. If the

work used is a job that requires a lot of power, should choose a motor with a high torque

value.

Figure 2.20 Details of Stepper Motor specification.

42

Figure 2.21 Meaning of the model name of a stepper motor.

 2.3.5 Working Principle of Stepping Motor, A Stepping Motor or Stepper Motor

is a pulse driven electric motor. The internal structure consists of magnetic poles on the

stator (Stator) made of steel rings. There will be protruding spokes assembled in layers.

Each of the protruding teeth has a coil (coil) wrapped in it. When a current pass through

the coil, an electromagnetic field occurs.

43

Figure 2.22 Stepper Motor structure picture

 In the operation of Stepping Motor or Stepper Motor, it cannot be driven or run

by itself. It is necessary to have an electronic circuit that is used to generate a signal or

supply pulses to the stepping motor drive circuit (Stepping Motor Drive). Viewing the

location of the wires connected to the stepping motor

Figure 2.23 Working Diagram of Stepping Motor

 Stepping operating mode, since a Stepper Motor's stator consists of multiple

windings, the electrical supply to excitation to different coil pairs will inevitably cause

different work. can be separated as follows Figure 2.23 and Figure 2.24

Full Step Mode In this mode, when we supply 1 pulse, the motor will move 1 full step,

for example, the NEMA 17 motor has a specification of 200 Step/Revolution. Therefore,

if we want the motor to complete a complete rotation Must be paid in the amount of 200

Pulse, which will be divided into 2 types:

 1-Phase on Stepping is to supply Pulse to each coil causing Rotor to rotate in

different directions as shown in the Figure 2.23.

44

Figure 2.24 Power supply single coils of Stepper Motor at a time

 2-Phase on Stepping is similar to the 1-Phase type, except that we will supply

pulses to both sets of coils simultaneously, meaning that we have to supply power to 2

coils when there is a magnetic field from 2 coils. Let's suck the rotor at the same time,

making it more powerful. This method makes the motor have 30-40% more torque, but

in exchange for using twice as much power as having to pay for the additional coil itself.

Figure 2.25 Power supply to two coils of Stepper Motor at a time

45

 If writing as a pulse distribution table into each step, it will be as follows Table 2.3

Table 2.3 Power supply to 1-Phase and 2-Phase on Stepping in Full Step Mode

1-Phase on Stepping

Step Wire 1 Wire 2 Wire 3 Wire 4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

2-Phase on Stepping

Step Wire 1 Wire 2 Wire 3 Wire 4

1 1 1 0 0

2 0 1 1 0

3 0 0 1 1

4 1 0 0 1

Half Step Mode Working in this Half Step Mode is the same as working in 1-

Phase on Stepping and 2-Phase on Stepping combined, allowing us to get more resolution.

Step itself, such as the original NEMA 17, if using Full Step, it will rotate 1.8 degrees per

time, but if using Half Step, it will rotate only 0.9 degrees and of course, if you want to

rotate 360 degrees, you need to pay more Pulse from 200 to 400 times that

46

Table 2.4 Power supply to 1-Phase and 2-Phase on Stepping in Half Step Mode

Step Wire 1 Wire 2 Wire 3 Wire 4

1 1 0 0 0

2 1 1 0 0

3 0 1 0 0

4 0 1 1 0

5 0 0 1 1
6 0 0 0 1
7 1 0 0 1
8 1 0 0 0

 Micro Step Mode is the most complicated mode. But it produces fine spindle
rotation, high torque and smoothest rotation. In this way, the coil is excited by two sin
waves 90° apart from each other in phase. It can control the rotation of the motor axis in
very fine detail (up to 0.007°/Step), which is very popular in tools such as 3D Printers,
CNC machines.

Figure 2.26 Power supply in Micro Step Mode graph

 From the graph, it can be seen clearly that we supply electricity to the red coil.

And the blue coil with a Sine Wave that is 90 degrees different from each other. The coil

has more and less electricity, causing more and less inductance as well. More red coils,

less blue hairs, the rotor core will be sucked to the red side. etc., thus allowing the stepper

motor to move smoothly and precisely.

47

 There are many ways to drive stepper motors, including full step, half step and

micro step. Each drive method provides a different torque and step size that the stepper

motor can use.

 In full-step drive, both electromagnets are always "on". To turn the central shaft,

one electromagnet is closed and the next electromagnet is open, causing the shaft to rotate

1/4 tooth (at least on hybrid stepper motors). This type has two electromagnets that are

always on and has the highest torque of all types, but also the largest increment.

 In the half-step drive, two electromagnets and only one electromagnet are

switched on alternately. To rotate the central shaft, a first electromagnet is energized in a

first step, and then a second electromagnet is energized while the first electromagnet is

still energized. The third step turns off the first electromagnet, and the fourth step turns

on the third electromagnet while still energizing the second electromagnet. As shown in

the diagram above, this mode uses twice as many steps as a full step drive, allowing half

the step length, but also less total torque because there are not always two electromagnets

holding the center shaft in place.

 Not surprisingly, in these styles, micro stepping has the smallest possible

increments. One of the most common ways to perform micro stepping is "sin-cosine

micro stepping". This means that the current flowing through each coil is manipulated to

produce sine/cosine waves. The "overlap" of the waves between the two coils results in a

large number of sub steps. The actual number of sub steps depends on the amount of

significant variation in the current you can inject into the coil. However, of all the styles,

micro stepping still has the smallest step size and therefore the most precise movement.

The torque associated with this type depends on the amount of current flowing through

the coil at any given time, but is always less than a full step drive.

48

Figure 2.27 Power input to various stepping motors.

2.4 Stepper Motor Driver
 Stepping Motor Drive is a device that is responsible for driving the stepping

motor to be able to move or work. motor to rotate Precisely moves to the desired position.

By all these processes Must consist of 3 main devices: Controller, Stepping Motor Drive

and Stepping Motor, Stepper Motor is a motor that has different operating characteristics

from general motors. Because the pulse signal must be fed to the motor windings in a

proper rhythm. And the rotation of this type of motor will rotate rhythmically according

to the input pulse. If a continuous pulse signal is input the motor will be able to rotate

continuously like a normal DC motor. Therefore, with the pulse input timing, the operator

can select the position where the motor should stop turning.

49

The rotational stroke of a stepper motor is called step, hence the name of this type of

motor. Motor resolution is defined in degrees of rotation in one step. If the motor has a

large number of degrees per step, it means that this motor has a low rotational resolution.

For example, one complete revolution is 360 degrees. If the motor has 7.5 degrees per

step, the motor has 7.5 degrees per step. This motor has a rotation resolution of 48

positions, but if the rotation step is 1.8 degrees per step, the rotation resolution is 200, it

can be seen that the latter motor has a much higher resolution than the first one. Makes it

used in applications that require better positioning, more accurate, combined with a half-

step drive circuit. The resolution of rotation is increased by 2 times, making the resolution

of rotation becoming 400 positions. Therefore, Stepping Motor & Drive is an important

device for Control the rotation in the movement of the rotation to rotate to the desired

position. It receives signals from PLC or other automatic control devices. It is a device

that controls the operation of the stepping motor to rotate to the desired position precisely.

There are 2 types of circuit connection, shown in Figure 2.27 and Figure 2.28

Figure 2.28 Stepper motor driver with Microcontroller and Stepper Motor wiring
diagram schematic type Common-Anode Connection

50

Figure 2.29 Stepper motor driver with Microcontroller and Stepper Motor wiring
diagram schematic Common-Cathode Connection

2.5 Encoder
 Is a type of sensor that acts in encryption from the distance from the rotation

itself and converted into code in the form of electrical signals, can bring these codes to

convert back to find the values we want whether the rotation distance degrees of

movement or speed of rotation and then brought to display the results for us to know the

value through the display screen, for example, if wanting to measure the distance must be

connected to the number counter To display the distance or if wanting to measure the

speed around must be connected to the pulse meter by applying the encoder It can be used

for a variety of tasks such as electronic assembly processes. semiconductor industry

Various measuring tools, such as in length measurement or medical equipment industry,

etc.

 2.5.1 Rotary Encoder, it is used to measure the angle caused by the rotation of

the encoder shaft. The output signal produced by the measurement has two forms.

51

Figure 2.30 Rotary encoder

 2.5 .2 Absolute Rotary Encoder, the working principle of this encoder is shown

in the figure. The number of code bars (Digital bits coding) will be assigned to

overlapping cycles in the line of Rotate with a reading head made up of a light sensor.

(Photo-detector) is equal to the number of bar codes. Read the code while moving. The

working principle is similar to Absolute Linear Encoder by changing the direction of

motion to linear to rotation.

Figure 2.31 Structure of the rotary encoder type Absolute Rotary Encoder

 2.5.3 Increment Rotary Encoder, the working principle of this encoder is shown

in the figure. Small straight bars are placed perpendicular to the direction of rotation. The

reading head is made up of 2 optical sensors placed at an angle, so that while the rotary

plate is rotated, the signal that comes out through the output in the form of a pulse (Pulse)

will be phased with each other. 90 degrees, which is for checking the direction of rotation

on the encoder shaft. So, resolution and accuracy So it depends on the number of small

52

straight lines that are placed perpendicular to the direction of rotation. This is usually

stated in the form of the number of pulses per travel distance, such as 100 Pulse/rev. The

working principle is similar to the Incremental Linear Encoder by changing the direction

of motion to linear to rotation.

Figure 2.32 Structure of the rotary encoder type Incremental Rotary Encoder

 2.5.4 Knob Rotary Encoder module, this type of encoder works by counting by

rotating forward and reverse during the rotation of the output pulse frequency.

These turns are unlimited compared to counter-rotating potentiometers. The button on the

rotary encoder can be reset to the initial state, counting from 0.

Working principle: The incremental encoder converts the displacement signal of angular

momentum into a series of digital rotary sensors.

These pulses are used to control angular displacement. Eltra converts angular

measurements based on the photoelectric scanning principle. The reading system of

alternating transmission windows and windows consists not of a rotating base of a radial

index disk (codewheel), but of an infrared light source that shines light vertically onto the

image of the codewheel onto the receiver. area on the surface. The receiver is covered

with a diffraction grating with the same window width as the code wheel. The receiver's

job is to sense the changes caused by the disk's rotation and convert the light into

corresponding electrical changes. The low-level signal is then transferred to a higher

53

level, and there are no interfering square-wave pulses that must be processed by electronic

circuits. Readout systems typically use a differential approach, where the two waveforms

are roughly the same phase difference compared to the signal to improve the quality and

stability of the output signal. The difference between the two signals is then formed from

the difference between the two signals, thereby canceling the interference.

Figure 2.33 Keyes Knob Rotary Encoder Schematic

Figure 2.34 Keyes Knob Rotary Encoder Direction and Signal Transformation Format

54

2.6 MATLAB Simulink Program
 MATLAB program or Matrix Laboratory program was first developed by Dr.

Cleve Molor [18 – 19], who wrote this program in Fortran language. This program was

developed under the LINPACK and EISPACK projects. MATLAB program is a program

designed for mathematical calculations. In general, Especially vector and matrix

calculations. Both in the real number system and the complex number system This is

highly suitable for use in computational analysis and system design. In all branches of

engineering

A MATLAB program is a high-performance computer program used for

technical computing. Programming and the display are combined in a single program

effectively. In addition, the characteristics of writing equations in the program are similar

to writing mathematical equations. Work that uses MATLAB programs such as general

calculations. Modeling data analysis Visualization in general graphs and scientific and

engineering graphs can be programmed in a graphical user interface.

The function of the MATLAB program can be run in the form of direct contact.

(Interactive) is to write the commands one by one to allow MATLAB program to continue

processing. Or able to compile those instructions into a program. One important aspect of

the MATLAB program is that all data is stored in an array, where each variable is

subdivided. In the MATLAB program, we don’t need to reserve dimensions like most

programming languages, so we can easily solve vector and matrix problems. This results

in a significant reduction in execution time compared to programming in a C program or

Fortran program.

2.6.1 MATLAB program principal system, the working principle of the program

is divided into 5 main parts.

 2.6.1.1 Development Environment.

 2.6.1.2 MATLAB Mathematical Function Library.

 2.6.1.3 MATLAB Language.

 2.6.1.4 Handle Graphics

 2.6.1.5 MATLAB Application Program Interface (API)

55

2.6.2 Development Environment, this section is a set of tools that allow us to

use various functions and files. Many of these tools provide a graphical user interface,

including MATLAB Desktop and Command, Windows, command history and browsers

for viewing help, workspace, files and search paths.

2.6.3 The MATLAB Mathematical Function Library

In this section is the collection of parts of the program that have been compiled into sub-

files. Each file. It is a file written to define characteristics in calculations or different

algorithms, from simple functions such as addition, basic trigonometric functions such as

sine, cosine, to complex functions. There are many computational steps, such as finding

the inverse of a matrix, finding eigenvalues and eigenvectors, or fast Fourier transforms.

2.6.4 The MATLAB Language

This section is a high-level language that uses matrix or array variables that contain

commands used to control program execution. Function operation the structure of

variables, the input and output of the program, all of which help to make each program in

MATLAB a smaller program compared to programs for the same purpose that the user

has to write. Every step of the functionality comes up by itself.

2.6.5 Handle Graphics

This section is used to display graphics and images. Includes high-level commands used

for rendering in two and three dimensions. Formatting in a way that image processing,

animation. In addition, this section also includes a low-level language so that we can edit

images. To be as we want as much as possible Including the creation of Graphic User

Interface under the work of MATLAB as well.

2.6.6 The MATLAB Application Program Interface (API)

This section is a library that allows us to write programs in C language or Fortran and has

a link to work with MATLAB. This section also includes programming and calling

MATLAB functions to use. (dynamic linking), which allows MATLAB to function as a

computational engine, including the ability to write or read MAT-files.

2.3.7 MATLAB command window used for this research

2.6.6.1 Editor/Debugger, in writing a program, known as M-file, can be written

with a normal text editor such as Notepad because M-file is a program that uses letters in

the style of normal ASCII Code and for MATLAB version 5 onwards, there is an editor

56

included. MATLAB as well, making it very convenient to use because besides being an

editor, there is also a debugger to help edit the program. We are able to use

Editor/Debugger To create and edit M-files, which is a program to call MATLAB

commands or functions to run Editor/Debugger This will act as both a text editor for

programming. And acts as a debugger, with tools that help in editing program in the event

that a program error occurs Functions or commands that we write to use with MATLAB,

we will call it MATLAB file or for convenience, we prefer to abbreviate it and call it M-

file. It will look like the following figure 2.35.

Figure 2.35 MATLAB M-file functions

Which on Editor/Debugger This will have many tools to help us to be able to

write programs more easily. However, the details of using Editor/Debugger This will be

discussed in the chapter related to writing M-files.

2.6.6.2 Graphic Windows, when given a command to write a graph, MATLAB

will display it on the Graphic Windows, which will start automatically. Depending on the

57

command assigned to MATLAB, more than one Graphic Window may appear at the same

time. Menu Bar and so on. The Graphic Window will look like the following figure 2.36.

Figure 2.36 MATLAB display it on the Graphic Windows

Which in this window, in addition to being used to display images It can also be

used to create a Graphical User Interface to make programs that interact with the user

using buttons. Like a program that works under general windows as well in addition,

Graphic Window also has a tool that helps to write graphs more conveniently, especially

in later versions of MATLAB. Add more graphs to the Graphic Window, whether adding

text, adding lines, adding axis titles or graph titles. change of perspective Change the

direction of the light that shines on the image. And much more, and in version 6, this is

able to fit the curve that we wrote on the Graphic Window as well. For details on using

various tools on the Graphic Window.

2.7 SolidWorks Program
SOLIDWORKS is a drawing and design program that was developed for use in

the work. Product design, furniture design and 3D mechanical part design which has the

following functions:
 2.7.1 Part Solid construction uses the methods and technology of Surface

Modeling (NURBS).

58

2.7.2 Assembly Modeling can assemble 3D parts faster. with the size of the file Smaller

and uses less memory
 2.7.3 Drawing automatically generates 2D drawings from 3D and You can save

files as *dwg.
 2.7.4 Simulation is used to test movement and check for conflicting parts.
 2.7.5 Animator creates animations showing parts in action. or mechanical And

can save files as *AVI (video files).
 2.7.6 Sheet Metal can create various folding works. and can make plans to

unfold sheet metal work and other application modules such as basic finite element

analysis
 SolidWorks program is a drawing assistant program that focuses on drawing in

3D or Parametric Solid Models. This refers to a 3D model that has a different texture than

a 3D Wireframe type, which can be used with a 2 D CAD program plus the imagination

of the drafter can be written out. The Wireframe 3-D Model is therefore a model. 3D that

consists of lines or lines continually, while the term Parametric Solid Model refers to a

3D model created by mathematical relationships which are computed within the program.

This type of 3D drawing is convenient. with more authors

Figure 2.37 SolidWorks program is a drawing Robotic 3-D Model

59

2.8 Arduino Microcontroller Board
Arduino is a microcontroller board that uses a small AVR microcontroller as a

processor and command. Suitable for use in learning and developing microcontroller

systems. And can be applied to control many different input/outputs devices, both Digital

and Analog and can work both in a way that is a single independent operation or connect

to work together with other devices such as PC computers. The hardware system of

Arduino can be built and assembled and developed for use by yourself. The program that

will be used as a development tool, can be downloaded and used for free. Arduino is an

open-source microcontroller development system, making it easy to develop programs.

And there are data sheets including examples. To be used as a guide to study and learn a

lot. For this reason, it made people pay attention. and led to many studies and experiments

has been adapted and create different types of projects together a lot Therefore, it is

especially useful for beginners who can use examples as references as a guideline for

studying and learning easily. [10, 11],

 2.8.1 Components of the Arduino UNO R3 board

 2.8.1.1 Reset switch is a Reset button for Reset Arduino Board

 2.8.1.2 Port USB is a Port for connecting Arduino Board to the

computer.

 2.8.1.3 I/O Pin is Input and Output of Arduino Board (Digital I/O,

PWM, Analog Input, Serial Port).

 2.8.1.4 LED Pin13 is an LED that connects to I/O Pin 13 of Arduino

Board.

 2.8.1.5 LED Status TX/RX is LED Status of Port serial that is

connected to Port USB.

 2.8.1.6 LED Power is an LED indicating that the Arduino Board is

working.

 2.8.1.7 ICSP Interface is an Interface for Program Bootloader.

 2.6.1.8 ATmega16U2 is a Microcontroller model ATmega16U2 that

is used to control the conversion of Serial to USB Port.

 2.8.1.9 ATmega328 is a Microcontroller (ATmega328) used on

Arduino Board UNO, which when we write a program, it will be saved and work inside.

60

This microcontroller

 2.8.1.10 Power Input is a port for connecting to an external power

supply.

Figure 2.38 Arduino Microcontroller Board

2.9 Program Arduino IDE C++
 The Arduino software, also known as the Arduino IDE (Integrated Development

Environment), is a tool used to develop programs on the Arduino platform and upload

successfully developed programs onto the Arduino microcontroller board. And can

choose to use the program as an online IDE or a desktop IDE.

 2.9.1 Online IDE program (Arduino Web Editor) will be programming through

the website. by various information that we have written will be stored on the Cloud,

which makes it convenient to use anywhere in addition, we do not need to update

programs or libraries.

 2.9.2 The desktop IDE program is an offline program, that is, we have to

download the program at [28] which will be available according to the usage of the OS

61

Figure 2.39 Arduino Desktop IDE program

Figure 2.40 Arduino Online IDE program

2.9.3 Advantages of Arduino IDE Software

It supports development in many model boards and can add other boards

that are not Arduino boards to be able to develop programs and upload programs onto the

62

board. Within the Arduino IDE, there are various commands. program example and

example libraries that has been installed and ready to use More libraries can be

downloaded and installed. There is an online cloud for data storage. data can be retrieved

and displayed.

2.9.4 The functions of the Arduino IDE program

 2.9.4.1 Write a program in C/C++ language for Arduino.

 2.9.4.2 Compile or transform C/C++ program to the microcontroller

language and save it as Intel Hex File.

 2.9.4.3 Upload the Intel Hex File onto the microcontroller on board

Arduino via USB cable or via Programmer.

2.7.5 Components of the Arduino IDE program
 2.9.5.1. The menu bar contains File, Edit, Sketch, Tools and Help.

Figure 2.41 Arduino IDE program menu bar contains

 2.9.5.2 The File menu has the following submenus:

 1) New: Used for creating a new window for writing Sketch.

 2) Open: Used to open the Sketch that we saved.

3) Open Recent: Used to open the Sketch that we used to

open. There will be a name for us to choose from.

63

4) Sketchbook: is used to always open the last activated

sketch file.

 5) Examples: is used to open the sample program in the

Arduino IDE program.
 6) Close: is used to close the Arduino IDE program only for the

function that we press to close.

7) Save: is used for saving the sketch that we are currently

writing. If we haven't recorded before It will pop up a

window for us to enter a name and select a recording area.

 8) Save As: Used to save the name of a different Sketch.

 9) Page Setup: is used to set the printing area of the printer.

10) Print: is used for printing in the control program area to

the printer.

11) Preferences: Used to open some settings windows of the

Arduino IDE program to make it suitable for use.

12) Quit: is used to close every window of the Arduino IDE

program.

Figure 2.42 Arduino IDE program File menu

64

 2.9.5.3 The Edit menu has the following submenus:

1) New: Used for creating a new window for writing

Sketch.1) Undo is used to go back to the previous work.

2) Redo is used for moving the operation up 1 time (This

command can be used when Undo is pressed first).

3) Cut is used to delete the text that we typed in the control

area. (That text should be highlighted before using this

command.)

4) Copy is used for copying the text that we highlighted in

the control program area.

5) Copy for Forum is used to copy all messages in the control

programming area. to be placed in various document

programs in the original manner

6) Copy for HTML is used to copy all text in the control area.

to be placed in various document programs in the form of

HTML

7) Paste is used for pasting text that we have copied. into the

control programming area

 8) Select All is a highlighted selection of all text.

9) Go to line is to set the position of the Keser to the position

we want.

10) Comment/Uncomment Used to assign to the line where

the Kaiser is located. Descriptive text or non-descriptive

text?

11) Increase Font Size is used to increase the size of the text

in the control program area.

 12) Decrease Font Size is used to reduce the size of the text

in the control program area.

 13) Find is used to search for text or search for text while

making changes to that text.

65

Figure 2.43 Arduino IDE program Edit menu

 2.9.5.4 The Sketch menu has the following submenus:

1) Verify/Compile used for checking the code that we have

written whether there is a mistake or not along with

compile

2) Upload is used to compile the code that we have written.

and upload directly to the Arduino board.

3) Upload Using Programmer is used to compile the code that

we have written. and uploaded to the programmer

4) Export compiled Binary is used for compiling the code that

we have written. And convert it to a HEX file into the

folder of the program that we saved.

5) Show Sketch Folder is used to see the location of the

Sketch file that we are currently writing. at which position

 6) Include Library is used to call the Library that we want to use.

66

Figure 2.44 Arduino IDE program Sketch menu

 2.9.5.5 The Tools menu has the following submenus:

1) Manage Libraries Used for accessing to manage various

libraries.

2) Serial Monitor Open the Serial Monitor window (only

active if the board is connected to the computer)

3) Board: “………………..” is used to select a board to

match the board we use.

4) Port is used to select Com Port that Board Arduino is

connected to.

5) Burn Bootloader is used to load part of Bootloader into the

Arduino board.

67

Figure 2.45 Arduino IDE program Tools menu

 2.9.5.6 The Help menu has the following sub-menus.

1) Getting Started is a link to learn how to use basics from

the Arduino board, program download, program

installation, and driver installation of the board, etc.

2) Environment This is a link to learn about using the

Arduino IDE program.

3) Troubleshooting It's a link to collect problems. and solutions

4) Reference is a link to the page to learn various commands.

5) Find in Reference is used to find references of various

commands. By placing the cursor at that command and

then pressing this command

6) Frequently Asked Questions is a link to frequently asked

questions.

68

7) Visit Arduino.cc is a link to the website.

https://www.arduino.cc8 .About Arduino is used to view

the version of the program Arduino IDE.

Figure 2.46 Arduino IDE program Help menu

 2.9.6 Shortcut menu

 2.9.6.1) The Verify: is used to verify the code that we have written.

Whether there is a mistake or not along with compile

 2.9.6.2) Upload: is used for compiling the code that we have written.

And upload it to the Arduino board.

 2.9.6.3) New: is used to create a new window to write Sketch.

 2.9.6.4) Open: used to open the Sketch we saved.

 2.9.6.5) The Save: is used to save the sketch that we are currently

writing. If we haven’t recorded before It will pop up a window for us to enter a name and

select a recording area.

 2.9.6.6) The Serial Monitor: opens the Serial Monitor window (will

only work if the board is connected to the computer)

69

Figure 2.47 Arduino IDE Program Shortcut menu

Figure 2.48 Arduino IDE Program Serial Monitor window appearance

70

Figure 2.49 Arduino IDE Program Serial Plotter window appearance

 The Serial Monitor window plays a large role in displaying the performance of

the program instead of using Other display devices because Arduino has prepared a

command to display the value of the variable that you want to see the result of, that is,

Serial.print. to the Arduino hardware or controller board provided Type a message and

click the Send button. In order to send data, you must set the baud rate for the program in

the Serial.begin command. Set the Linux operating system, the Arduino hardware resets

when the serial monitor is started.

 2.9.7 Basic Arduino Board Test Commands that are used in the Arduino

program will be used to create a button on the toolbar so that it can be clicked.

Immediately, the buttons on the toolbar: Select an Arduino board by selecting it from the

Tools > Bord menu. The program will show the available boards in computer for users

Figure 2.50 Selecting the type of Arduino board connected

71

 Select the COM port used to connect to the Arduino board by selecting it from the

Tools > Serial port. Shows the available ports on the computer for the user to choose from

in the example select COM3 port.

Figure 2.51 Arduino comport selection window

Figure 2.52 Sample code for testing uploading program into board Arduino

 Upload the program to the Arduino board by clicking the Upload button or

selecting File upload menu. Wait until the upload is complete. The board will work

immediately. Blinks every 1 second to complete the test. Writing and uploading the basic

program with the Arduino board. If there is an error uploading the program, it will cause

the Arduino board to be inoperable. You must check from the orange message below to

see what is wrong.

72

Figure 2.53 shows that the program has been successfully uploaded

 When the program is compiled, the status bar and the compilation display

window, which is a black window at the bottom of the program, the status bar will display

the message Done Compiling and the display window will say Binary Sketch. Size: 2,992

bytes (of a 32,256 Byte Maximum) indicates that a machine language program as of

compilation, it is 2,992 bytes out of the total usable memory capacity of 32,256 bytes.

2.10 Machine Vision
"Vision system" has played a huge role in the modern industrial system. Due to

the need for consistent quality work Accurate and fast production process to meet

consumer demand. These processes used to be tasks that required human resources to do.

But there were many problems due to the uncertainty, fatigue, insufficient intelligence,

inferior development, which caused the work to come out with uncertain quality and

delay. Therefore, the system was invented and developed to replace it. For this reason,

the vision system was born. [5 - 9],

Vision system can therefore be defined simply as follows: a system that processes data

from images or videos. to obtain significant information

Because the vision system is widely used many elements therefore can be changed as

appropriate but generally classified as follows:

 2.10.1 The image receiving (Vision Sensor), which can receive this image in

several ways, such as Load image files from the source, capture images through a camera

or capture through a video camera, etc. This part is like the human eye itself.

 2.10.2 Vision Lighting. This part of the lighting not only helps to see. But if

installed properly and properly, it will also help the system work faster. and more accurate

 2.10.3 The information processing (Vision Processor) is comparable to the

73

human brain. It is for thinking and analyzing to find information from what is seen. It also

serves to make decisions in response to the analyzed data. Most of the processing is a

computer. or a specialized microprocessor

 2.10.4 Objects to process (Object of Interest) These objects are anything that we

need to get some analytical data from it for further use.

2.11 NI Vision LabVIEW Program
 LabVIEW is a program created for measurement and instrumentation in

engineering. LabVIEW stands for Laboratory Virtual Instrument Engineering

Workbench, which means it is a program that creates Virtual measuring instruments in

engineering laboratories Therefore, the main purpose of the work of this program is to

manage the measurement and measuring tool effectively And, in the program, will consist

of functions used to help measure many and most certainly. This program is extremely

useful when used in conjunction with engineering instrumentation. The most obvious

difference between LabVIEW and other programs is that LabVIEW is a completely GUI

(Graphic User Interface) program. Write any code or instructions, and most importantly,

the language used in this program is called a picture language, also known as the G

language (Graphical Language), which instead of programming in lines as we are familiar

with. BASIC such as C, BASIC or FORTRAN with all images or symbols. which,

although at first, may be somewhat confusing but once you get used to using this program,

you'll find that LabVIEW is convenient and can save a lot of programming time.

Especially in computer programming to connect with other devices. for use in

measurement and control as a primary goal, National Instrument began to develop a

program that would be used in instrumentation systems with ease of programming and

functionality to assist in engineering measurements as much as possible. Instrument

began to produce equipment used in engineering measurements. It's not a company that

started primarily as a software production company, so it wouldn't be wrong for those

who want to get the most out of LabVIEW, those who want to bring data from outside

the computer. into the machine for data analysis, processing, display and in many cases

used in computerized automatic control systems. The greatest advantage of LabVIEW is

that our computers, combined with LabVIEW and the Data Acquisition Card, can turn

74

our personal computers into measuring instruments in many ways. Whether it is an

Oscilloscope, Multi-meter, Function Generator, Strain meter Thermometer or other

measuring instruments. as we want This makes it possible to use computers to measure

and measure widely. This is where the name comes from. Virtual instrument and the

advantage over using those real devices is that the Virtual Instrument can be adjusted to

suit the use of each group of users. By changing the VI to suit your needs, it's not that

difficult. [5 – 9, 20],

Figure 2.54 The programming screen and the display screen

 Another advantage of using a computer as a measuring tool is that Can be used

as a Data Logger and PLC (Programmable Logical Controlled) at the same time, which

is usually not a control system in a basic real measuring device or Data Logger, although

it can store data. But the order to work with other devices It will be very difficult to order.

For those who have used text-based programs Known as Text Base, everyone would

know the difficulty of dealing with the location of the data transmission by connected

devices such as Port or Card, including the positioning in memory in order to be able to

collect data for use. Calculate and store data to get the most out of it. Many of these

problems are addressed in LabVIEW, which contains many programs or libraries to

address them. Whether the connecting device is a DAQ (Data Acquisition), GPIB

(General Purpose Interface Bus, formerly known as Hewlett Packard Interface Bus, HP-

75

IB), a serial port, or a Serial Port to communicate with the sending device. through serial

instruments, as well as various data analysis methods. In addition, those libraries contain

many important functions such as signal generation, signal processing, filters, statistics,

algebra, and other mathematics, so LabVIEW makes measurement and instrumentation

much easier. And make our personal computers into a variety of measurement tools in

one device.

 2.11.1 Data Flow and Programing

 Since LABVIEW is an image-based program, or symbols instead of writing

with characters like normal programs the first benefit is the reduction of misspelling or

typographical errors. Another important difference between G programming and literal

programming is that Written in G language, this is written using the principles of Data

Flow, which when starting to send data into the program. We need to determine where

the data flow will go. In what areas has it been evaluated and calculated? and how to show

results the style of writing G language or Data Flow is similar to writing a Block Diagram,

which allows programmers to pay attention to the movement and change of data without

having to memorize complicated commands.

 Because LabVIEW uses a block diagram style that most engineers are already

familiar with. Therefore, it is easy to understand and can be further developed. And if

we remember the programming process that before writing the program, the Flow Chart

must be completed first. After checking the Flow Chart, we then use it to write a

program. which will be more convenient If writing Flow Charts in LabVIEW is

programming, this greatly simplifies the workflow. Programming in LabVIEW does not

require any prior programming knowledge, but Have knowledge in programming or use

other ready-made programs can be utilized as well

 LabVIEW provides a front panel that is like what the user will see and control.

Users can create their own designs quickly because LabVIEW includes components.

Used for designing many screens such as opioid displays, knobs (Dial) and switches, etc.

LabVIEW will show results and control operations via a computer.

76

The programming area is called Block Diagram. It is like a hardware inside a measuring

instrument. LabVIEW writes a program based on images.

Figure 2.55 Block Diagram of LabVIEW Program

 2.11.2 LabVIEW relies on the principle of instrumentation or control, allowing

users to design according to their needs. These principles are divided into three main

parts:

Figure 2.56 Block Diagram generated from LabVIEW Program

2.11.2.1 Acquisition, which is the part that receives data (Input) from the

external environment into the system in this case is the computer. The data entered into

this system may come from the DAQ card (for electrical signals).

 2.11.2.2 Analysis After receiving the data, it may be through a function to

analyze the data. This will be displayed in a meaningful form that the user can display

instead of a measurable and usable medium.

77

 2.11.2.3 Presentation is a form of display that is useful to users. It may be

displayed on a computer screen such as a DMM (Digital Multimeter) showing specific

results that are measured without needing to know the importance of time or Spectrum

Analysis showing signals in terms of frequency or printing out a report or storing data in

a hard disk

 2.11.3 Components in LabVIEW

 Programs written in LabVIEW are called Virtual Instruments (VI) because their

appearance on the screen when the user operates is similar to that of an engineering

instrument or device. At the same time, behind the scenes of those virtual devices is the

execution of functions, subroutines, and the main program just like a normal language.

For a VI, it consists of 3 components:

A. Front Panel

B. Block Diagram

C. Icons and Connectors

These three parts make up a virtual reality device. The characteristics and functions of

the three components are as follows.

 2.11.3.1 Front Panel or dial It is the part used to communicate between

the user and the program. In general, it looks like the dial of the instrument or device used

in general measurement, generally consisting of Toggle switches, knobs, push buttons,

displays, or even user-defined values. For those who are familiar with Visual

programming, it is well understood that this Front Panel is like a GUI of a program or VI.

Figure 2.57 LabVIEW Program front panel

78

There are three types of objects on the front panel:

 1) Control is a type that receives value from the user (Input),

which the user can type in. Or use the mouse to click to change values such as rotary

buttons, scroll buttons, switches, etc.

 2) Indicators are the type used to display various values only

(Output) that cannot be modified by the user, such as graphs, meters, LEDs.

 3) Decorations are objects that are not related to the program

and code on the Block Diagram, but are only used for the beauty and order of the Front

Panel. The Front Panel's appearance is shown in the following figure.

Figure 2.58 Objects on the Front Panel of LabVIEW

 2.11.3.2 Front panel design tools, the front panel design tools consist

of a control palette and a tools palette. LabVIEW has a control palette used to design the

front panel, shown in Figure 2.8, which is the user interface. Groups such as numbers

(Numeric), within which there are various Control and Indicators related to numbers.

79

Figure 2.59 Controls Palette used in Front Panel design

 Tools Palette is a tool used in program development. Which will use both Front

Panel design and Block Diagram. In this section, we will discuss Tools Palette for Front

Panel design.

Figure 2.60 Tools Palette used to design the Front Panel.2.4 Block Diagram

 To make it easier to understand, we may look at this Block Diagram as a Source

Code or LabVIEW program, which appears in the form of G language. This Block

Diagram is considered an Executable Program, meaning it can be run immediately.

Another advantage is that LabVIEW always checks for program errors. Makes the

program work only when there are no errors in the program. Users can view the details

of the error at any time, making programming easier.

 Components within this Block Diagram are comprised of functions, constants,

control programs or structures. Then in each of these sections This will appear in the form

of a block. We will be wired together (Wire) for the appropriate block together. To define

80

the flow of data between those blocks, allowing the data to be processed as desired and

displayed to the user.

Figure 2.61 Example Block Diagram

 2.11.4 Image Processing, To identify colors in still images in LabVIEW,

the visual aid tool IMAQ ColorMatch VI [25] was used. The Color Processing VIs

perform basic processing of color images. Use these VIs to compute the histogram of a

color image. Apply the lookup table 2 and Figure 12 to the color image. Change the

brightness, contrast, and gamma information associated with color images. and

Threshold:ColorImage finds a match between the color content of multiple regions in the

image and that defined by the input color spectrum. Chromatograms are exported by

IMAQ ColorLearn VI. [20],

Figure 2.62 NI Vision Development Module

81

Table 2.5 IMAQ COLORMATCH VI IMPLICATION [20],

ROI Descriptor Specifies the descriptor of the region in the image whose
color information is to be compared with that in the color
spectrum.

Image Reference to the color image from which to extract color
features to compare them to the colors defined by the
Color Spectrum input color features array.

Color Spectrum Contains information about matching colors. During the
matching phase, the color information in each specified
image region is compared to the information contained in
this array.

Color
Sensitivity

Specifies the sensitivity of the color information in the
image. Default is low. Set this option to High if you need
to distinguish colors with similar hue values.

2.12 NI LabVIEW Interface for Arduino Microcontroller
It is an add-on program for LabVIEW that is more versatile and convenient

when it can be connected with the Arduino program, which will make the program

development divided into two parts. The first part is to develop a program from LabVIEW

called LabVIEW Interface For Arduino and the second part is to write the functionality

of the program from Arduino in the wiring language which is successfully developed into

a library called LIFA Base. [10, 11],

 For Interface between LabVIEW and Arduino In the experiment, there will be

programming in 2 parts: LabVIEW and Arduino to make development easier. Therefore,

LabVIEW Interface for Arduino (LIFA) Toolkit was developed. The idea is to generate Arduino

code and load it to the Arduino Board and create subvi LabVIEW to be easily run. But behind-the-

scenes work is also a serial communication between Arduino and LabVIEW.

82

a) Arduino Code is LIFA_Base.Ide

b) Subvi LabVIEW such as Init, Close, Write Digital, Read Digital, Write Analog,

Read Analog, etc.

 LabVIEW Interface For Arduino installation is to install a basic program to run

LabVIEW method together with using Arduino program. following

12.8. Install the NI-VISA Drivers so that LabVIEW can use the additional

functions of the Serial Port.

 2.8.2 Install JKI VI Package Manager (VIPM) Community Edition (Free) to

find and install LabVIEW add-ons and Toolkits from the LabVIEW Tools Network.

 32.8. Open VI Package Manager program and search for LabVIEW Interface

For Arduino extension program and install Toolkit as shown in Figure 2.29

Figure 2.63 NI-VISA Drivers Software

Figure 2.64 JKI VI Package Manager (VIPM)

83

Figure 2.65 LabVIEW Interface for Arduino (LIFA) Software

84

CHAPTER3

RESEARCH METHODOLOGY

Parallel robots are parallel structure robots. with the robot consisting of a robot

base. and the forearm used to act as assigned and between the base and the end of the arm

will be connected by a total of three sets of robotic arms. So, the whole structure consists

of 11 arms, 12 spherical joints, and 3 rotating joints, all driven by 3 motors. independence

equals three which corresponds to the number of the mechanical arm sets the nature of

the robotic arm of the Parallel robot is connected in a symmetrical manner, that is, each

robotic arm forms an angle of 120 degrees to each other with two ends. connected to the

base and the same forearm, sometimes this structure can be called a closed structure robot

and because of this making Parallel robots are more difficult and complex in many ways,

for example, when moving one arm This affects the remaining two arms, making one

movement of the robot necessary to supply power to all motors, or to control all motors.

3.1 Parallel Robot Structure
 For the design of a Robot structure, the task starts with analysing the main

structural dimensions of the Robot Parallel based on kinetic simulations to determine the

robot's desired working area and trajectory using the MATLAB Simulink program. The

structure of the robot is designed with the SOLIDWORKS program, including the design

of the system and the selection of robot control devices. The analysis method is based on

the factor data regarding the speed and accessibility of the desired workpiece. The parallel

robot's physical structure is depicted in Figure 3.1, Figure 3.2 and Figure3.3

85

Figure 3.1 The structure 3 DOF Parallel robot

(a) (b)

Figure 3.2 Section view of Robot structure (a) Top View (b) assembly Section

(c) (d)

Figure 3.3 Parallel Robot structure (c) Bottom View (d) Side View

86

Figure 3. 4 The Component of Parallel robot

Table 3.1 List of Parallel robot Component

Item Robots Component Quantity

1 Stepper Motor include Encoder / Motor Driver 3

2 Coupling 3

3 Pulley XL 10T 8mm 3

4 Pulley XL 60T 10mm 3

5 Timing Belt XL 160mm 3

6 Bearing 10mm 3

7 Shaft 13mm 3

8 Base platform 1

9 Actuating arm 3

10 Passive arm 3

11 Ball Joint 8mm 12

12 Travelling platform 1

13 Vacuum Pad (Gripper) 1

87

3.2 Parallel robot Arm parameters
 Structural design of parallel robots Size and length of the main parts the

parameters that will be used in the construction and assembly of the robot are very

important because these parameters greatly affect the working area and trajectory of the

robot if not properly presented. Will result in limitations that will make the robot unable

to work in the area. [2,5,6,8,9] The position parameters of the main of the Parallel robot
frame can be observed in Figure. 3.5

Figure 3.5 Parallel robot mechanism diagram.

 As mentioned in the mechanical structure section. The robot consists of four

types of arms: base (OF), upper arm (rf), lower arm (re), and Side of the fixed triangle

(f), which focus on length and weight, both of which affect the robot's performance. in

the length section for the base and tip the sleeve is measured from the length of the side.

and in terms of weight, Since the base is a stationary part, it makes the weight of the base

has no effect on the robot in terms of performance. the total length dimension of the robot

arm is shown in Table 3.2.

88

Table 3.2 Parallel robot Manipulator Key component parameter and dimensions

3.3 Control System Design
 Overview of the control system It has designed a vision system to detect the

difference in position size and colour of the target workpiece sent on the conveyor belt

with a vision camera detecting the position, size, and colour of the target workpiece to

transmit the detected image to the NI LabVIEW Vision software for image processing for

data acquisition and image processing after that, the NI Vision LabVIEW program will

analyse the acquired images and send control signals to microcontroller No. 1, which is

the main microcontroller board that will transmit the signal controlling the position of the

robot to the microcontroller board number 2, 3 and 4 to control the stepper motor. It issues

conditional control commands to the motor driver. The parallel robot is designed using

stepper motors and motors. All 3 drivers work independently. Has installed a rotation

sensor (Rotary Encoder) at each motor axis for detecting the rotation position of the motor

and sending a detection signal to the Arduino microcontroller board No.1 to display signal

effect the angle position of the robotic arm in each control condition. The control system

is designed using a Vision Camera to communicate with the NI Vision program,

computer, and microcontroller board to control the operation of the parallel robot and

each System to communicate and send data to each other as in Figure 3.6

Component Name Symbol Value (mm)
Dimension of upper link rf 200
Dimension of lower link re 500
Dimension of the fixed triangle f 554.26
Dimension of the end effector
triangle

 e 259.81

Dimension from center of base plate
to center of motor

 OF 160

Dimension from center of travelling
plate to ball joint

 OE 75

89

Figure 3.6 Interface of control system architecture

 Operation process of the control system, System operation It will start by

pressing the start position button switch to send a signal to microcontrollers No. 2, 3, and

4 to control the three robot arms to move to the starting position (Home Position) and

send a control signal to the conveyor control system to starts the conveyor to transporting

the workpiece through a vision camera system that detects the target's position, size, and

colour. After that, the vision system sends the image detection signal to NI Vision

LabVIEW to store the data and process the image. The NI Vision LabVIEW program

analysed the acquired image signal and converted it into a digital control signal and sends

the control signal to the microcontroller Board No.1 and the 1st microcontroller board

will analyse the incoming digital signal to compare with the condition of the written

program code. After that, it will send the digital output signal to the 2nd microcontroller

Board No.3 and Board No.4 to stepper motor driver to control all of the motors to rotate

the robot Link in specified direction conditions. and at the same time, of each motor

Sensor detection rotation angle position (rotary encoder) sends the send the upper arm

angle position to the microcontroller board No.1, which shows the position of the robot's

upper arm angle on the Serial monitor program page from Arduino C++ IDE. The

received signal can be compared with the dynamics simulation results of MATLAB

simulation programs [24, 26] for further data analysis. The block diagram of the parallel

90

robot control system is shown in Figure 3.7, and Figure 3.8 shows the operation steps of

the control process.

Figure 3.7 Parallel Robot control system schematic

Figure 3.8 Workflow of the Parallel Robot control process

91

Figure 3.9 A parallel robot mechanism connects all three motors with a
microcontroller, camera view and delivery system.

3.4 Parallel Robot Kinematics
 Overview of the control system It has designed a vision system to detect the

difference in position size and colour of the target workpiece sent on the conveyor belt

To control the movement of the robot’s forearm. Need to rely on the mechanics of the

robot, which is knowledge about mathematical equations. Because Delta robots have

complex mechanics in past research, many researchers have attempted to propose

different methods (19-23] in this research It will take the kinematic of robotics to find the

geometry of the robot which is one of the popular methods and can be used to control the

robot well. Used to solve the angle of the puppet’s upper arm and forearm position as in

Figure 4.1. These problems can be solved by forward kinetics and inverse kinetics which

will be discussed further in this chapter. And also, in this chapter, also discusses the data

of the robotic arm and robot workspace Model. The details will be described as follows.

92

3.4.1 Parallel Robot Forward Kinematic, Parallel Robot Forward Motion

Equation A mathematical equation is used to calculate the angle of the upper arm. Is the

position of the end effector of the robot when the joint angles are known. Since the three

angles -23], the center position (Xt, Yt, Zt) of the moving plate is

obtained by calculating the forward dynamics of the third axis [19-23]. Parallel robot

First, the parameters of the robot can be defined. To calculate and set the lengths of the

main parts of the parallel robot in mathematical equations Important variables must be

configured namely the distance between the center of the base and the center of the motor

(OF), the length of the upper link (rf), the distance of the lower link (re) and the center of

the drive plate and the ball joint (OE). By this calculation Obtained from the overlapping

of 3 spheres considering the shape of the robot. If the center of the sphere is at point J,

then the radius of each sphere is equal to the length of the forearm. Then move the center

of J1, J2, and J3 to points J1’, J2’, and J3’ in the 3D view. The length of the forearm at

the origin of the three joint is expressed as

 +) + (= = 1,2,3 = = = tan(30°) = (1) 1 1 = 1 1 = 1 1 = tan(30°) = (2) 1 1 = () (3) 2 2 = () (4) 3 3 = () (5)

1 = 0() cos()sin() = (, ,) (6)

2 = + cos() cos(30°)+ cos() cos(30°)sin() = (, ,) (7)

3 = + cos() cos(30°)+ cos() cos(30°)sin() = (, ,) (8)

93

() + () + () =() + () + () =() + () + () = (9)

+ + 2 2 = [1]+ + 2 2 2 = [2]+ + 2 2 2 = [3]
(10) = + + (11) + ()y + () = [4] = [1] [2]+ ()y + () = [5] = [1] [3]()x + ()y + () = [6] = [2] [3] (12)

From [4] – [5] = + [7] (13) = [()() ()()] (14) = [()() ()()] (15) = () () (16) = + [8] (17) = [()() ()()] (18) = [()() ()()] (19)

The latest solution and calculate in x0 and y0 from the equation [7] and [8]

The solution equation instead [7] and [8] in [1]

(+) + 2(+ ()) + (+ () +) = 0 (20)

3.4.2 Inverse Kinematic of Parallel Robot, Inverse kinematics: If the position

of the end effector (X, Y, Z) is known [19-23], the common a

be determined. Need to calculate the inverse kinematics of a 3-axis parallel robot with

delta. First, the robot parameters for the calculation of the mathematical equations must

be determined. Then determine the side length of the upper triangle as f, the side length

of the lower triangle as e, the length of the upper arm as rf, and the length of the lower

arm as re.

94

= (, ,)

(21) = tan(30°) = (22)

= = , ,= 0, , (23)

= , , 0 (24) = () () = (25) () + () =() + () = (26)

() + () =(+) + () = (27)

= 0, , = (, , , , , ,) (28) = tan (29) (, ,) (, ,) (30) = (cos(±120°)) + (sin(±120°))= (sin(±120°)) + (cos(±120°))= (31)

(a) (b)

Figure 3.10 The projection of the parallel robot kinematic

95

The loop that is most relevant to the desired Jacobian analysis should be chosen,

which is a vector consisting of the excitatory common variable and the position vector of

the moving plate. Then

= = , = (4) (32)

Table 3.3 Parallel robot workspace simulation configuration parameter

3.5 MATLAB Program for Parallel Robotic Kinematic Simulation
 To write a program to simulate the orientation and trajectory taking of the

Parallel robot by specifying and referring to the size parameter of the parallel robot arm

by using the MATLAB M-file function and GUI program by writing the program code

that is shown in APPENDIX A.

3.6 NI Vision LabVIEW Program for Target Object Color Detection and interface
with Arduino microcontroller Board
 For programming to detect the difference in color and size of the target object

using the LabVIEW NI vision Program and the communication interface to control the

Parameter Name Symbol Value (mm)

Upper link rf 200

lower link re 500

Distance between

base center and

motor center

 OF 160

Distance from

running board

center to ball joint

 OE 75

96

operation of the robot using the LabVIEW interface with Arduino (LIFA) program by

writing code. Program shown in APPENDIX B.

3.7 Arduino IDE C++ Program for Robotic Kinematic Detection
 For writing programs to read and display the Robot arm angle position signals.

of the parallel robotic arm using the Arduino IDE C++ program by writing the program

code as shown in APPENDIX C.

97

CHAPTER4

RESEARCH RESULT

4.1 Parallel Workspace Analysis and Simulation of Manipulator based on
MATLAB

Robot kinematics simulation in order to know the range of robot motion and

work area suitable for designing a prototype parallel robot with MATLAB Simulink

program [14-16]. Programming first needs to know the length of the mechanical arm of

the parallel robot, the distance from the centre of the base to the centre of the motor (OF),

the length of the upper joint (rf), the length of the lower joint (re). And the distance

between the centre of the moving plate and the ball joint (OE) distance. As shown in

Table 3.4 and Figure 3.5, there are main component parameters related to the movement

of the manipulator.
First section, simulation programming using the inverse kinematic theory is

carried out in four scenarios to prove the limitations of the motion of the parallel robot in

each scenario. For [OF(Lr), rf(La), re(Lb), OE(Lh) = [160, 200, 500, 75] (mm)

Figure 4.1 The Parallel-Robot. Manipulator simulation parameters

98

 4.1.1 Scenario 1, Workspace simulation and analysis for z1, Simulate the

movement of the robot, and determine the limit of the movement range of the manipulator

at the deepest point z1 by setting the maximum movement distance of the end effector of

the manipulator in the z1 axis to a distance greater than the maximum distance from the

kinematic calculations results. of the robot with parameter values of the robot arm

obtained from the kinematic calculation [z1 = -200, z2 = 150, R = 250] by determining

the simulation parameters of the robot arm [z1 = -210, z2 = 150, R = 250,].

 From Figure 4.4 In the 3D model, it can see while setting z1 = -210 mm as a

parameter for the simulation program that is a value greater than from the inverse

kinematic theory, calculated at = -200 mm, use the RUN command to run in the

MATLAB simulation program in front of the simulation program MATLAB will display

the simulation model of exercise robotic arm Robot End-Effector in the z1 axis from the

-411 mm (Home Position) position and the 3D Model program will display the message

“Out of workspace!” at the -615 mm position. Thus, in Fig. 4.3, by comparing the position

of the graph from the beginning of the Robot End-Effector in the z1 axis to the end at the

point where the text indicates the problem point, the maximum displacement in the z1

axis is known (615mm. – 411mm. = 204 mm). shows that the trajectory and working

area of the robot obtained in the simulation are within the region obtained from the results

calculated from the inverse kinematics. As shown in Table 4.1.

Figure 4.2 Scenario1, Setup parameter for z1 simulation and analyzed for [z1, z2, R]

99

Table 4.1 Simulation result in limit workspace point for Scenario 2,

Upper Arm Link Name Limit of Workspace point
End-Effector Length from HP

x, 241.5 241.5

y, 0 0

z1, -615 204

Upper Arm Joint Name Joint Angles (degrees)

1 34.8°

2 95.8°

3 95.8°

Figure 4.3 Simulation 3D model of Maximize of lower-level workspace of z1, in
Scenario1,

100

Figure 4.4 Simulation of Maximize of trajectory tracking workspace graphs of z1, in
Scenario1,

 4.1.2 Scenario 2, Workspace simulation and analysis for z2, the robot's motion

simulation was determining of the robot's arm motion limitation area at the upper-level

point z2 by setting the movement range of the robot links at end-effector Up to a distance

greater than the maximum distance in the z2 axis from the invert kinematic calculations

results. of the robot with parameter values of the robot arm obtained from the invert

kinematic calculation [z1= -200, z2 = 150, R = 250] by determining the simulation

parameters of the robot arm [z1 = -200, z2 = 160, R = 250,].

 From Figure 4.5 of In the 3D model, it can see while setting z2 = 160 mm as a

parameter for the simulation program that is a value greater than from the inverse

kinematic theory, calculated at = 150 mm and use the RUN command to run in the

MATLAB simulation program in front of the MATLAB simulation program will display

the simulation model of the movement of the robotic arm Robot End-Effector in the z2

101

axis from the -411 mm (Home Position) position and the 3D Model program will display

the message “Out of workspace!” at the -252 mm position. Thus, in Fig. 4.4, by

comparing the position of the graph from the beginning of the Robot End-Effector in the

z2 axis to the end at the point where the text indicates the problem point, the maximum

displacement in the z2 axis is known (411mm. – 252mm. = 159 mm). shows that the

trajectory and working area of the robot obtained in the simulation are within the region

obtained from the results calculated from the inverse kinematics. As shown in Table 4.2.

Figure 4.5 Scenario2, Setup parameter for z2 simulation and analyzed for [z1, z2, R]

102

Figure 4.6 Simulation 3D model of Maximize of Upper-level workspace of z2, in
Scenario2

Figure 4.7 Simulation model of Maximize of trajectory tracking workspace graphs of
z2, in Scenario2,

103

Table 4.2 Simulation result in limit workspace point for Scenario 2,

Upper Arm Link Name

Limit of Workspace point
End-Effector Length from HP

x, 250 250

y, 27 27

Z2, -252 159

Upper Arm Joint Name Joint Angles (degrees)

1 -90°

2 8°

3 20°

 4.1.3 Scenario 3, Workspace simulation and analysis for R (Radius of x-axis,

and y-axis), To simulate the motion of the robot, divide the moving distance of the end

effector of the robot arm by the limit of the range of motion of the robot arm at the cylinder

point R (the limit radius of the working range of the X-axis and Y-axis). The distance

between the axis and the Y-axis is greater than the kinematic calculation the maximum

distance of the result. By determining the simulation parameters of the robot arm [z1 = -

200, z2 = 150, z1 = -200, z2 = 150, R = 260]

 From Figure 4.8 of the simulation in 3D model, it can be seen that when setting

R = 260mm as a parameter of the simulation program, a value is greater than the value of

the inverse dynamics theory calculated at = 250mm, and when using the command RUN

to leave the simulation program running the MATLAB simulation program MATLAB

shows the simulation model and 3D model of the robot arm "Robot End-Effector" moving

in the x-axis and y-axis from the position of 0mm (initial position) and the 3D model

program displays the message "Out of work area!". At 250mm position. Therefore, in

Figure 4.9, by comparing the position of the robot end effector from the start of the R

radius on the x-axis and y-axis to the end point of the text indicating the problem point,

the maximum displacement in the x-axis is known (250 mm - 0 mm = 250mm).

104

Figure 4.8 Scenario3, Setup parameter for R simulation and analyzed for [z1, z2, R]

Figure 4.9 Simulation 3D model of Maximize of radius workspace of x-axis, and y-
axis, in Scenario3

105

Figure 4.10 Simulation of Maximize of trajectory tracking workspace graphs of x-axis,
and y-axis, in Scenario3,

Table 4.3 Scenario 3, limit workspace simulation

Upper Arm Link Name Limit of Workspace point
End-Effector Distance from HP

x, 250 250

y, 0 0

Z2, -615 204,

Upper Arm Joint Name Joint Angles (degrees)

1 31.3°

2 94°

3 94°

106

 4.1.4 Scenario 4, inverse kinematics simulation for x-axis, y-axis and z-axis,

Simulate the movement of the robot, by setting the movement range limit of the robot

arm at the cylinder point R (the limit radius of the X-axis, Y-axis and Z-axis work area),

and set the movement distance as the end effector of the mechanical arm on the x-axis

and y-axis The distance with the z-axis is greater than the maximum distance of the

kinematic calculation results. By determining the simulation parameters of the robot arm

[z1 = -200, z2 = 150, z1 = -200, z2 = 150, R = 250]

 It can be seen from Figure 4.12 of the 3D model that when setting z1=-200mm,

z2=150mm, R=250mm, that is, the calculated kinematics value, use the RUN command,

MATLAB enables the simulation program to run. During the process, it simulates the

movement of the mechanical arm and can work until the end of the process. From the

trajectory tracking diagram in Fig. 22, the parallel robot kinematics simulation based on

MATLAB Simulink can understand the spatially constrained shape of the parallel robot

prototype in all workspace dimensions and summarize the values according to Table 4.4.

Figure 4.11 Scenario4, Setup parameter for x-axis, y-axis and z-axis simulation and
analyzed for [z1, z2, R] = [-200, 150, 250] (mm)

107

Figure 4.12 Simulation 3D model of Maximize of radius workspace of x-axis, y-axis,
and z-axis, in Scenario4 for [z1, z2, R] = [-200, 150, 250] (mm)

Figure 4.13 Simulation model of Maximize workspace of x x-axis, y-axis and z-axis, in
Scenario4

108

Table 4.4 Scenario 4, limit workspace simulation result

Upper Arm Link Name

Value (mm) from Home position
Min. Max.

x, -250 250

y, -250 250

Z, -200 150

Parameter Name Joint Angles (degrees) Robotic Arm orientation

1 110° -85°

2 110° -85°

3 110° -85°

4.2 Workspace and Trajectory Tracking Experiment of Prototype Parallel Robot
 From determining the working range of the experimental parallel robot

prototype to reaching the optimal working range. The structural size of the prototype

parallel robot is determined with reference to the ratio obtained by MATLAB program

simulation. Therefore, after designing and assembling the prototype parallel robot, a

parallel robot experiment was carried out, using the principle of inverse kinematics to test

the results of the joint angular motion position of the manipulator, to understand the

kinematic characteristics of the manipulator at various positions and to detect motion. For

the movement of the robot, install joint angle sensors (rotary encoders) at the ends of the

three motor

transmit the measured robot joint angle position feedback signals to any state under the

arm to the microcontroller. The result of the angular position of the robotic arm can be

displayed on the program page of the Arduino serial IDE monitor. The program page can

graphically compare the angle values -time signals received

from the sensors and the angle values of the robot with the reference signal according to

the experimental conditions. In this experiment, according to the experimental procedure

shown in Figure 23, the real-time signal data obtained from the serial monitor was plotted

in a Microsoft Excel program to clearly see the signal pattern.

109

Figure 4.14 Experimental process step of Parallel Robot

110

 The experimental motion sequence of the prototype parallel robot uses the

principle of inverse kinematics, and follows the experimental flow shown in Figure 4.14

to check the efficiency and results of the arm joint angles of the prototype parallel robot.

System The joint angular position of the robot arm is moved to the home position (home

position) and moved to position 1. This has positioned the end of the robot arm (end

effector) to travel down the Z [x] axis = 0 mm, Y = 0 mm and Z = -150 mm]. The angles

kinematics simulation with the MATLAB Simulink program.

 The position of the robotic arm (end effector) moves to the specified position

according to the conditions of step 1. This step is an experiment to obtain the signal result

of the angle detection of the connected encoder sensor. Placed on the motor shaft as a

feedback signal for comparison with the angular position pattern of the robot arm

determined by simulation. Then set the arm to move to position 2. The robotic arm (end

effector) is positioned to move on the z-axis [x-axis = 0mm, y-axis = 0mm, z-axis =

+250mm]. Adjus - -40,

-40], the same as step 1. This step is the result of the experiment. The signal obtained

by the angle detection of the sensor installed on the motor shaft is used as the feedback

signal. It is used for comparison with the robot arm position pattern obtained from a

kinematics simulation using the MATLAB-Simulink program. The total number of

experiments is 5 rounds, as shown in Table 4.22, and the position of the robot arm and

the angle of the robot arm are determined. The motors for each step are determined

through kinematic simulations using a MATLAB Simulink program in Figure 4.15 and

Figure 4.16.

111

Figure 4.15 The simulation results 3D Model for [x, y, z] = [0, 0, -411], [0, 0, -561],
[0, 0, -311]

Figure 4.16 Simulation model of Trajectory Tracking results graphs for [x, y, z] = [0,
0, -411], [0, 0, -561], [0, 0, -311]

112

Table 4.5 Parallel Robot Experiment for joint angle orientation

Experiment Step
Angle

Desired Angle

Desired Angle

(Degree) (Degree) (Degree)

Home Position 0º 0º 0º

Step 1 -40º -40º -40º

Step 2 38º 38º 38º

Step 3 -40º -40º -40º

Step 4 38º 38º 38º

Step 5 -40º -40º -40º

Step 6 38º 38º 38º

Step 7 -40º -40º -40º

Step 8 38º 38º 38º

Step 9 -40º -40º -40º

Step 10 38º 38º 38º

Home Position 0º 0º 0º

Table 4.6 Parallel Robot joint angle orientation results

Experiment Step
Detection Angle

Detection

Angle

Detection Angle

(Degree) (Degree) (Degree)

Home Position

0º

0º

0º

Step 1 -39º -38º -39º

Step 2 40º 42º 42º

Step 3 -39º -39º -38º

Step 4 42º 41º 42º

Step 5 -39º -38º -39º

113

Step 6 40º 41º 42º

Step 7 -39º -39º -39º

Step 8 42º 42º 41º

Step 9 -38º -38º -39º

Step 10 41º 40º 41º

Home Position 0º 0º 0º

Table 4.7 Parallel Robot error signal of joint angle orientation results

Experiment
Step

Detection Angle

Error

Detection Angle

Error

Detection Angle

Error

(Degree) (Degree) (Degree)

Home
position

0º 0º 0º

Step-1 1º 2º 1º

Step-2 2º 4º 4º

Step-3 1º 1º 2º

Step-4 4º 3º 4º

Step-5 1º 2º 1º

Step-6 2º 3º 4º

Step-7 1º 1º 1º

Step-8 4º 4º 3º

Step-9 2º 2º 1º

Step-10 3º 2º 3º

HP 0º 0º 0º

114

Figure 4.17

Figure 4.18

115

Figure 4.19

4.3 Experimental Results from LabVIEW Vision Control

Table 4.8 LabVIEW Vision Experiment and Result for Color Matching Processing

Object Blue Color Yellow Color Red Color

Experiment
Number.

30 30 30

Result Number. 30 30 30

Accuracy 100% 100% 100%

116

Table 4.9 LabVIEW Vision Experiment and Result for Color Gain

Object
Blue Color Yellow Color Red Color

Min Max Min Max Min Max

Experiment
Setpoint

0.45 1.2 0.45 1.2 0.45 1.2

Result 0.750 0.754 0.770 0.790 0.760 0.763

Accuracy within the specified

limits

within the specified

limits

within the specified

limits

(a) LabVIEW Vision Color processing Front Panel

117

(b) Front Panel Object color matching and gain detection

Figure 4.20 (a), (b) Front Panel of LabVIEW Vision show Object color matching and
Gain detection

(c) LabVIEW Vision Color processing Front Panel

118

(d) Front Panel Object color matching and gain detection

Figure 4.21 (c), (d) Front Panel of LabVIEW Vision show Object Blue color matching
and Gain detection

(e) LabVIEW Vision Color processing Front Panel

119

(f) Front Panel Object color matching and gain detection

Figure 4.22 (e), (f) Front Panel of LabVIEW Vision show Object Yellow color

(g) LabVIEW Vision Color processing Front Panel

120

(h) Front Panel Object color matching and gain detection

Figure 4.23 (g), (h) Front Panel of LabVIEW Vision show Object Red color matching
and Gain detection

121

CHAPTER5

CONCLUSION AND RECOMMENDATION

5.1 Discussion and Recommendation
 This research aims to design and write a simulation program for the motion of

the robotic arm in order to obtain data on the working area and trajectory of the parallel

robot by determining the size of the robot's structure accordingly. Based on the

calculations from the kinematic theory of parallel robots and using the data obtained from

simulations as a reference, designing a prototype parallel robot to work with the machine

vision system and the conveyor belt so that both Collaborative systems like automation

systems work with robots that are widely used in industrial plants today.

Actual experimental results from a prototype robot. Comparison with the

kinematic simulation results of the MATLAB program for all 4 cases. From Figure 4.15

and Figure 4.16, it can be seen that the robot movement range of the program developed

using MATLAB/GUI is Parallel robot operation x = 0 mm, y = 0 mm, z = -150 to 100

- - -40° and the results of a 3-stage

experiment using the inverse kinetic approach. The positions of the manipulator joint

Figure 4.17, Figure 4.18, Figure 4.19 and Tables 4.5, 4.6, and 4.7 that the maximum error

value at each step is 4°. Positional manipulation of the end effector creates positional

differences because the robot has multiple joints that move during manipulation. And the

control system does not take into account the inertia of the robot. Controlling the robot's

inertia is a challenge. The inertia of the robot is constantly changing as the end effector is

placed in different positions. Results will show slight discrepancies over time due to

various inherent factors. However, the actual results are consistent with the experimental

target results obtained from the kinematic simulation, which helps us to understand and

know how the robot behaves in each situation. And in all dimensions of the joint motion

of the robot. Experimental data ensure that the use of a kinematic simulation program to

simulate the movement of the robot arm can be used as a data source already at the robot

design stage, thus reducing time. and reduce the risk of problems due to the limitations of

122

the robot. And it can be used as information to help factories choose the use of robots to

adapt them to the production conditions that the industrial factory also needs.

5.2 Implication for Practice and Future Research
The next step is to make robots more efficient by installing additional equipment

such as IOT vision control signals and robot control signals, and using AI and IOT

systems to receive signals from various sensors. Reduce the use of signal cables where

installation space is limited. And increase the convenience and speed of data collection,

and further optimize the control of robot motion.

123

List of Bibliography

K. Oranoot, “A STUDY OF FACTORS AND EFFECTS OF INDUSTRY 4.0 POLICY

ON THAI ELECTRONICS INDUSTRY,” AcademicYear2017 from

http://ithesisir.su.ac.th/dspace/handle/123456789/1783

Y. Jirasak, K. Siravit, H. Natnicha Hasoontree, “READINESS OF USING

AUTOMATED MANUFACTURING SYSTEM TO ENHANCE

PRODUCTION CAPABILITIES FOR AUTOMOTIVE PARTS IN

THAILAND,” Panyapiwat Journal Vol.10 No.3 September - December 2018

W. Thunyalak, “Automation and Required Skills for Thai Suppliers in the Automobile

Industry,” Journal of Social Work Vol. 27 No.2 July-December 2019

Akekachai Pannawan, Supattarachai Sudsawat, “Automated part inspection by image

processing system in vehicle part manufacturing,” The Journal of Applied

Science ISSN 1513-7805 Printed in Thailand Vol. 16 No. 1: 45-59 [2017]

M. Dechrit “Industrial Robotics & mechatronics Applications” Bangkok, Thailand, SE-

EDUCATION, 2018

F. Faris, D. Burhanudin, W. Putri, R. Irmawan, A. Dwi, “Vision Application of

LabVIEW: IGUI for Face and Pattern Detection in Real Time,” 2020

International Conference on Information Management and Technology

(ICIMTech)

Michel A. Aguilar-Torres, Amadeo J. Argüelles-Cruz, “A real time artificial vision

implementation for quality inspection of industrial products,” Electronics,

Robotics and Automotive Mechanics Conference 2008

Z. Yao “Dynamic Detection System of Workpiece Based on Machine Vision,” 2010

International Conference on Intelligent Computation Technology and

Automation

Shrenika R M, Swati S Chikmath, Ravi Kumar A V, Divyashree Y V, Roopa K Swamy,

“Non-Contact Water Level Monitoring System Implemented using LabVIEW

and Arduino,” 2017 International Conference on Recent Advances in

Electronics and Communication Technology

F. J. Jiménez, F. R. Lara and M. D. Redel “API for communication Between Labview

124

and Arduino UNO,” IEEE LATIN AMERICA TRANSACTIONS, VOL. 12,

NO. 6, SEPTEMBER 2014 971

Abdulghader Elfasi, M0hamed Abdussalam Shawesh, Waid.T.Shanab , Abdulaziz

Khaled thabet, “Oscilloscope using Arduino interface LabVIEW,” 2017

International Conference on Green Energy Conversion Systems (GECS)

Hyo-Jeong Cha; Jae-Hong Woo, Hanyang University, Ansan, Korea; Byung-Ju Yi;

Chanhun Park “Workspace Analysis of the DELTA robot according to robot

parameters and ball joints,” 2013 10th International Conference on Ubiquitous

Robots and Ambient Intelligence (URAI)

M. AFROUN, T. CHETTIBI, S. HANCHI “Planning Optimal Motions for a DELTA

Parallel Robot,” 2006 14th Mediterranean Conference on Control and

Automation

St. Staicu;D.C. Carp-Ciocardia “DYNAMIC ANALYSIS OF CLAVEL’ S DELTA

PARALLEL ROBOT,” 2003 IEEE International Conference on Robotics and

Automation

Mostafa Mahmoodi; Mahmood Ghafouri Tabrizi; Khalil Alipour, “A New Approach for

Kinematics-based Design of 3-RRR Delta Robots with a Specified Workspace,”

Conference 2015 AI & Robotics (IRANOPEN)

Sorawit Stapornchaisit, Chowarit Mitsantisuk, Nattapon Chayopitak, Yasuharu Koike,

“Bilateral control in delta robot by using Jacobian matrix,” 2015 6th

International Conference of Information and Communication Technology for

Embedded Systems (IC-ICTES)

P. Pradya “Workspace and Dynamic Trajectory Tracking of Delta Parallel Robot,” 2014

International Computer Science and Engineering Conference (ICSEC)

Eric McCormick, Yanjun Wang, Haoxiang Lang, “Optimization of a 3-RRR Delta Robot

for a Desired Workspace with Real-Time Simulation in MATLAB,” The 14th

International Conference on Computer Science & Education (ICCSE 2019)

August 19-21, 2019. Toronto, Canada

Jan Rehbein, Tim Wrütz, Rolf Biesenbach “Model-based industrial robot programming

with MATLAB/Simulink,” 2019 20th International Conference on Research

and Education in Mechatronics (REM)

125

https://www.ni.com/docs/en-US/bundle/ni-vision-labview-api-

ref/page/imaqvision/imaq_colormatch.html

J. A. BorjaI, AlvaradoD, Muñoz de la Peña “Low cost two-wheels self-balancing robot

for control education powered by stepper motors,” IFAC-PapersOnLine 2020

Gauri Shanker, GuptaPrabhat, Ranjan Tripathi “Prototype design for bidirectional control

of stepper motor using features of brain signals and soft computing tools,”

Biomedical Signal Processing and Control25 October 2021

126

APPENDICES

127

APPENDIX A
MATLAB / GUI Program for Parallel Robotic Kinematic Simulation

128

%===
===========
% S_Delta Robot
% 2022-01-8
%===
===========
function Delta_Robot__2022_01_08
close all
clear
clc
%--- Define global variables -----------------------------------

global end_program ploting k0 m_loops
global A B C
global psi M inv_M
global Xref Yref Zref Pref Line_P
global V_LINK_A0
global LINK_A LINK_B LINK_Bs BALLJOINT_B BALLJOINT_C
CONNECTER_PC
global LINK_B0 LINK_Bs0 BALLJOINT_B0 BALLJOINT_C0 CONNECTER_C0
global PLATE_C
global PLATE_C0
global thickness_PLATE
global trajectory
global Vector_Bs
global Line_Theta1 Line_Theta2 Line_Theta3
global Line_X Line_Y Line_Z
global Lr La Lb Lh Lb_s
%--- Schematic diagram ---

%
% ---> x
% O(0,0,0) Ai(Lr,0,0)
% O-----------o--------
% Lr \) ci
% \
% La \ <-- Link A
% \
% o Bi(x_b,0,z_b)
% /
% /
% Lb / <-- Link B
% /
% /
% P(x,y,z) o------o Ci(a,b,c)
% Lh
%
%---

Lr = 160; % (mm) dis(O,Ai)
La = 200; % (mm) Length of link A
Lb = 500; % (mm) Length of link B (long side)
Lb_s = 75; % (mm) Length of link B (short side)
Lh = 75; % (mm) dis(P,Ci)
thickness_PLATE = 1; % (mm)

129

%---

trajectory = 1;
% Select the trajectory of the end effector
% (1) Vertical line
% (2) Upper disk
% (3) Lower disk
% (4) Upper and lower circles
% (5) Cylinder
% (6) Sphere
% (7) Trapezoidal velocity trajectory
%--- Call SET_PARAMETERS (Set robotic arm parameters) ----------

SET_PARAMETERS
[Pref, m_loops] = SetTrajectory(trajectory);

%--- Call CREAT_FIGURE1 (Creat figure 1: 3D Delta Robot) -------

CREAT_FIGURE1

%--- Call CREAT_FIGURE2 (Creat figure 2: Time Response) --------

CREAT_FIGURE2

%--- Call CREAT_FIGURE3 (Creat figure 3: UI) -------------------

CREAT_FIGURE3

%=== Main loop Solve the inverse kinematics ^
============================
ploting = 0;
k0 = 0;
theta_A = zeros(3,1);
V_CONNECTER_C = cell(3,1);
V_LINK_B = cell(3,1);
V_LINK_Bs = cell(3,2);
V_BALLJOINT_B = cell(3,2);
V_BALLJOINT_C = cell(3,2);

while ~end_program
 if ploting
 k0 = k0+1;
 P = [Xref(k0); Yref(k0); Zref(k0)];
 %--- Inverse kinematics --------------------------------

 for i=1:3 % Calculate the coordinates: B{*}, C{*}
 C{i} = P +M{i}*[Lh;0;0];
 Ct = inv_M{i}*C{i};
 a = Ct(1);
 b = Ct(2);
 c = Ct(3);
 alpha = (Lr-a)/c;
 beta = 0.5*(a*a +b*b +c*c +La*La -Lb*Lb -Lr*Lr
)/c;
 gamma = Lr -alpha*beta;
 sigma = 1 +alpha^2;

130

 delta = gamma*gamma -sigma*(Lr*Lr+beta*beta-La*La);
 if delta>0
 x_b = (gamma +sqrt(delta))/sigma; % x1>x2
?(^- _)/ m

 z_b = alpha*x_b +beta;
 if x_b>Lr % theta<90
 theta = -asind(z_b/La);
 else % theta>=90
 theta = 180 +asind(z_b/La);
 end
 else
 set(findobj('Tag','text_error'),'Visible','on')
 k0 = m_loops;
 ploting = 0;
 set(findobj('Tag','pb_ResetRobot'),
'Enable','on')
 set(findobj('Tag','pb_Run'), 'Enable','off')
 break
 end
 Bt = [Lr+La*cosd(theta); 0; -La*sind(theta)];
 B{i} = M{i}*Bt;
 theta_A(i) = theta;
 end % END for i=1:3 % Calculate the coordinates: B{*},
C{*}
 %---

 for i=1:3
 %--- LINK_A --

 set(LINK_A(i), 'Vertices', V_LINK_A0{i})
 rotate(LINK_A(i),...
 Vector_Bs{i},...A{k1}-A{k2},...
 theta_A(i),...
 A{i})
 % --- CONNECTOR_PC ---------------------------------

 V_CONNECTER_C{i} = get(CONNECTER_C0, 'Vertices');
 set(CONNECTER_PC(i), 'Vertices', V_CONNECTER_C{i})
 rotate(CONNECTER_PC(i), [0,0,1], psi(i), [0,0,0])
 V_CONNECTER_C{i} = get(CONNECTER_PC(i), 'Vertices'
);
 V_CONNECTER_C{i}(:,1) = V_CONNECTER_C{i}(:,1)
+C{i}(1);
 V_CONNECTER_C{i}(:,2) = V_CONNECTER_C{i}(:,2)
+C{i}(2);
 V_CONNECTER_C{i}(:,3) = V_CONNECTER_C{i}(:,3)
+C{i}(3)...
 -0.5*thickness_PLATE;
 set(CONNECTER_PC(i), 'Vertices', V_CONNECTER_C{i})
 %--- LINK_B --

 for j=1:2
 %--- LINK_B (Parallel four-bar linkage: long
side) --------
 V_LINK_B{i,j} = get(LINK_B0, 'Vertices');
 set(LINK_B(i,j), 'Vertices', V_LINK_B{i,j})

131

 rotate(LINK_B(i,j), [0,1,0],...
 acosd((B{i}(3)-C{i}(3))/Lb), [0,0,0])
 rotate(LINK_B(i,j), [0,0,1], -psi(i), [0,0,0])
 rotate(LINK_B(i,j), [0,0,1],...
 atan2d((B{i}(2)-C{i}(2)), (B{i}(1)-C{i}(1))
),...
 [0,0,0])
 rotate(LINK_B(i,j), [0,0,1], psi(i), [0,0,0])
 V_LINK_B{i,j} = get(LINK_B(i,j),'Vertices');
 switch j
 case 1
 V_LINK_B{i,j}(:,1) =
V_LINK_B{i,j}(:,1)...
 +C{i}(1)+Vector_Bs{i}(1);
 V_LINK_B{i,j}(:,2) =
V_LINK_B{i,j}(:,2)...
 +C{i}(2)+Vector_Bs{i}(2);
 V_LINK_B{i,j}(:,3) =
V_LINK_B{i,j}(:,3)...
 +C{i}(3)+Vector_Bs{i}(3);
 case 2
 V_LINK_B{i,j}(:,1) =
V_LINK_B{i,j}(:,1)...
 +C{i}(1)-Vector_Bs{i}(1);
 V_LINK_B{i,j}(:,2) =
V_LINK_B{i,j}(:,2)...
 +C{i}(2)-Vector_Bs{i}(2);
 V_LINK_B{i,j}(:,3) =
V_LINK_B{i,j}(:,3)...
 +C{i}(3)-Vector_Bs{i}(3);
 end
 set(LINK_B(i,j), 'Vertices', V_LINK_B{i,j})
 %--- LINK_B (Parallel four-bar linkage: short
side) -------
 V_LINK_Bs{i,j} = get(LINK_Bs0, 'Vertices');
 set(LINK_Bs(i,j), 'Vertices', V_LINK_Bs{i,j})
 rotate(LINK_Bs(i,j), [0,1,0],...
 acosd(abs(C{i}(3)-C{i}(3))/Lb), [0,0,0])
 rotate(LINK_Bs(i,j), [0,0,1], psi(i), [0,0,0])
 V_LINK_Bs{i,j} = get(LINK_Bs(i,j),'Vertices');
 switch j
 case 1
 V_LINK_Bs{i,j}(:,1) =
V_LINK_Bs{i,j}(:,1)...
 +B{i}(1);
 V_LINK_Bs{i,j}(:,2) =
V_LINK_Bs{i,j}(:,2)...
 +B{i}(2);
 V_LINK_Bs{i,j}(:,3) =
V_LINK_Bs{i,j}(:,3)...
 +B{i}(3);
 case 2
 V_LINK_Bs{i,j}(:,1) =
V_LINK_Bs{i,j}(:,1)...
 +C{i}(1);

132

 V_LINK_Bs{i,j}(:,2) =
V_LINK_Bs{i,j}(:,2)...
 +C{i}(2);
 V_LINK_Bs{i,j}(:,3) =
V_LINK_Bs{i,j}(:,3)...
 +C{i}(3);
 end
 set(LINK_Bs(i,j), 'Vertices', V_LINK_Bs{i,j})
 %--- BALLJOINT ---------------------------------

 V_BALLJOINT_B{i,j} = get(
BALLJOINT_B0,'Vertices');
 V_BALLJOINT_B{i,j}(:,1) =
V_BALLJOINT_B{i,j}(:,1)...
 +B{i}(1)-(-1)^j*Vector_Bs{i}(1);
 V_BALLJOINT_B{i,j}(:,2) =
V_BALLJOINT_B{i,j}(:,2)...
 +B{i}(2)-(-1)^j*Vector_Bs{i}(2);
 V_BALLJOINT_B{i,j}(:,3) =
V_BALLJOINT_B{i,j}(:,3)...
 +B{i}(3)-(-1)^j*Vector_Bs{i}(3);
 set(BALLJOINT_B(i,j), 'Vertices',
V_BALLJOINT_B{i,j})
 V_BALLJOINT_C{i,j} = get(
BALLJOINT_C0,'Vertices');
 V_BALLJOINT_C{i,j}(:,1) =
V_BALLJOINT_C{i,j}(:,1)...
 +C{i}(1)-(-1)^j*Vector_Bs{i}(1);
 V_BALLJOINT_C{i,j}(:,2) =
V_BALLJOINT_C{i,j}(:,2)...
 +C{i}(2)-(-1)^j*Vector_Bs{i}(2);
 V_BALLJOINT_C{i,j}(:,3) =
V_BALLJOINT_C{i,j}(:,3)...
 +C{i}(3)-(-1)^j*Vector_Bs{i}(3);
 set(BALLJOINT_C(i,j), 'Vertices',
V_BALLJOINT_C{i,j})
 %---

 end % END: for j=1:2
 end % END: for i=1:3
 %--- Plot the motion trajectory ------------------------

 addpoints(Line_P, Xref(k0), Yref(k0), Zref(k0))
 addpoints(Line_Theta1, k0, theta_A(1))
 addpoints(Line_Theta2, k0, theta_A(2))
 addpoints(Line_Theta3, k0, theta_A(3))
 addpoints(Line_X, k0, Xref(k0))
 addpoints(Line_Y, k0, Yref(k0))
 addpoints(Line_Z, k0, Zref(k0))
 %--- PLATE_C (Bottom tool mounting plate) --------------

 V_PLATE_C = get(PLATE_C0,'Vertices');
 V_PLATE_C(:,1) = V_PLATE_C(:,1) +Xref(k0);
 V_PLATE_C(:,2) = V_PLATE_C(:,2) +Yref(k0);
 V_PLATE_C(:,3) = V_PLATE_C(:,3) +Zref(k0);
 set(PLATE_C, 'Vertices', V_PLATE_C)

133

 %---

 end % END: if ploting
 if k0>m_loops-1
 k0 = 0;
 ploting = 0;
 set(findobj('Tag','pb_Run'), 'String','Run')
 end
 drawnow limitrate
end % END: while (k0<=m_loops-1) && (~end_program)
close all
end % END: MAIN

%% === function: SET_PARAMETERS
===
function SET_PARAMETERS
global Lr La Lb Lh Lb_s
global end_program
global N_sides
global line_width
global marker_size
global XLim YLim ZLim
global XLength YLength ZLength
global A B C
global Vector_Bs
global psi c_psi s_psi M inv_M
global Xinit Yinit Zinit
global radius_Lb_s radius_Lb radius_BALL
global thickness_PLATE
global path_color marker_color
global COVER_color
global MOTOR_color MOTOR_SUP_color
global LINK_A_color LINK_B_color BALLJOINT_color
global PLATE_A_color PLATE_C_color CONNECTER_C_color
global COVER_face_alpha face_alpha
%---

end_program = 0;
N_sides = 8;
line_width = 0.5;
marker_size = 4;
%% --- The display range of the axes object ax_xyz -------------

XLim = 300*[-1,1]; % X-axis limits for the axes object
ax_xyz.
YLim = 300*[-1,1]; % Y-axis limits for the axes object
ax_xyz.
ZLim = [-750,300]; % Z-axis limits for the axes object
ax_xyz.
XLength = XLim(2) -XLim(1);
YLength = YLim(2) -YLim(1);
ZLength = ZLim(2) -ZLim(1);
%% --- Define the colors and transparency of graphics objects --

color_table{1} = [255, 0, 0]/255; % 1, 'r', red

134

color_table{2} = [255, 165, 0]/255; % 2, '-', orange
color_table{3} = [255, 255, 0]/255; % 3, 'y', yellow
color_table{4} = [0, 128, 0]/255; % 4, 'g', green128
color_table{5} = [0, 0, 255]/255; % 5, 'b', blue
color_table{6} = [128, 0, 128]/255; % 6, '-', purple
color_table{7} = [0, 255, 0]/255; % 7, '-', green255
color_table{8} = [0, 255, 255]/255; % 8, 'c', cyan
color_table{9} = [255, 0, 255]/255; % 9, 'm', magenta
color_table{10} = [70, 130, 180]/255; % 10, '-', steelblue
color_table{11} = [255, 255, 255]/255; % 11, '-', white
color_table{12} = [129, 216, 208]/255; % 12, '-', Tiffany
Blue
%---

COVER_color = color_table{8}; % 8, 'c', cyan
MOTOR_color = 0.1*[1, 1, 1]; % black
MOTOR_SUP_color = color_table{11}; % 11, '-', white
PLATE_A_color = color_table{10}; % 10, '-', steelblue
PLATE_C_color = color_table{3}; % 3, 'y', yellow
LINK_A_color = color_table{9}; % 9, 'm', magenta
LINK_B_color = color_table{4}; % 4, 'g', green128
BALLJOINT_color = color_table{1}; % 1, 'r', red
CONNECTER_C_color = color_table{3}; % 3, 'y', yellow
path_color = color_table{5}; % 5, 'b', blue
marker_color = color_table{9}; % 9, 'm', magenta
COVER_face_alpha = 0.3;
face_alpha = 0.4;
%---

Xinit = 0;
Yinit = 0;
Zinit = -sqrt(Lb^2 -(La+Lr-Lh)^2);
psi = [0,120,240];
c_psi = cosd(psi);
s_psi = sind(psi);
M = cell(1,3);
A = cell(1,3);
B = cell(1,3);
C = cell(1,3);
inv_M = cell(1,3);
Vector_Bs = cell(1,3);
for i=1:3
 M{i} = [c_psi(i), -s_psi(i), 0; s_psi(i), c_psi(i), 0; 0,
0, 1];
 inv_M{i} = [c_psi(i), s_psi(i), 0; -s_psi(i), c_psi(i), 0;
0, 0, 1];
 A{i} = M{i}*[Lr;0;0];
end
Vector_Bs{1} = 0.5*Lb_s*(A{2}-A{3})/norm(A{2}-A{3});
Vector_Bs{2} = 0.5*Lb_s*(A{3}-A{1})/norm(A{3}-A{1});
Vector_Bs{3} = 0.5*Lb_s*(A{1}-A{2})/norm(A{1}-A{2});
radius_Lb = 4;
radius_Lb_s = radius_Lb;
radius_BALL = radius_Lb*2;
thickness_PLATE = 10;
end % END: function SET_PARAMETERS

135

%% === function: CREAT_FIGURE1 --> 3D Delta robot
=========================
function CREAT_FIGURE1
%% --- Declare global variables --------------------------------

global ax_xyz
global XLim YLim ZLim
global XLength ZLength
global N_sides
global line_width
global marker_size
global La Lb Lh Lr Lb_s
global thickness_PLATE
global psi M inv_M
global A B C
global theta_A
global Line_P
global text_A
global Xref Yref Zref Pref
global LINK_A LINK_B LINK_Bs CONNECTER_PC
global LINK_A0 LINK_B0 LINK_Bs0 CONNECTER_C0
global BALLJOINT_B BALLJOINT_C
global BALLJOINT_B0 BALLJOINT_C0
global V_LINK_A0 V_LINK_B0 V_LINK_Bs0 V_PLATE_C0 V_CONNECTER_PC0
global V_BALLJOINT_B0 V_BALLJOINT_C0 Vector_Bs
global PLATE_C MOTOR_MOUNT MOTOR
global PLATE_C0
global radius_Lb_s radius_Lb radius_BALL
global path_color marker_color
global COVER_color
global MOTOR_color MOTOR_SUP_color
global LINK_A_color LINK_B_color BALLJOINT_color
global PLATE_A_color PLATE_C_color
global COVER_face_alpha face_alpha
%% --- Set the basic drawing environment -----------------------

fig1 = figure;
set(fig1,...
 'Tag','fig1',...
 'NumberTitle','off',...
 'Name','Delta Robot',...
 'Units','normalized',...
 'OuterPosition',[-0.006, 0.04, 0.55, 0.96],...
 'Color',[0.85, 0.95, 0.85])
%--- Creat the axes object: ax_xyz -----------------------------

ax_xyz = axes(...
 'Parent',fig1,...
 'Tag','ax_xyz',...
 'XLim',XLim,...
 'YLim',YLim,...
 'ZLim',ZLim,...
 'View',[25,15],...
 'FontName','Times',...
 'FontSize',12,...

136

 'Clipping','off',...
 'XTick',XLim(1):100:XLim(2),...
 'YTick',YLim(1):100:YLim(2),...
 'ZTick',ZLim(1):100:ZLim(2),...
 'TickDir','in',...
 'TickLength',[0,0],...
 'Position', [0.09, 0.02, 0.84, 1],...
 'Projection','orthographic',...
 'Color',[0.8 0.8 0.9]);
Line_P = animatedline('Parent',ax_xyz,...
 'Tag','Line_P',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
text(0,0,-400,' Out of workspace! ',...
 'Tag','text_error',...
 'Color',[1,0,0],...
 'BackgroundColor',0.95*[1,1,1],...
 'FontName','Times New Roman',...
 'FontSize',16,...
 'FontWeight','bold',...
 'HorizontalAlignment','center',...
 'Visible','off');
% cameratoolbar('Show')
axis square
grid on
box on
rotate3d on
%% --- Plot the x-y-z axes -------------------------------------

text(0.18*XLength, 0, ZLim(1)+10,...
 'x',...
 'Parent',ax_xyz,...
 'FontName','Times',...
 'FontSize', 16,...
 'Color','b',...
 'FontAngle','italic',...
 'HorizontalAlignment','center')
text(0, 0.2*XLength, 0.0025*XLength+ZLim(1),...
 'y',...
 'Parent',ax_xyz,...
 'FontName','Times',...
 'FontSize', 16,...
 'Color','b',...
 'FontAngle','italic',...
 'HorizontalAlignment','center')
text(0, 0, 0.22*XLength+ZLim(1),...
 'z',...
 'Parent',ax_xyz,...
 'FontName','Times',...
 'FontSize', 16,...
 'Color','b',...
 'FontAngle','italic',...
 'HorizontalAlignment','center')

137

arrow_x0 = CREAT_CYLINDER(...
 [0;0;ZLim(1)],...
 [0, 0.005, 0.005, 0.010, 0]*XLength,...
 [0, 0.125, 0, 0.02]*XLength,...
 32,...
 [1, 0, 0]);
set(arrow_x0, 'Parent',ax_xyz)
rotate(arrow_x0,...
 [0,1,0], 90,...
 [0;0;ZLim(1)])
arrow_y0 = CREAT_CYLINDER(...
 [0;0;ZLim(1)],...
 [0, 0.005, 0.005, 0.010, 0]*XLength,...
 [0, 0.125, 0, 0.02]*XLength,...
 32, [0, 1, 0]);
set(arrow_y0, 'Parent',ax_xyz)
rotate(arrow_y0,...
 [1,0,0],...
 -90,...
 [0;0;ZLim(1)])
arrow_z0 = CREAT_CYLINDER(...
 [0;0;ZLim(1)],...
 [0, 0.005, 0.005, 0.010, 0]*ZLength,...
 [0, 0.125, 0, 0.02]*ZLength,...
 32,...
 [0, 0,1]);
set(arrow_z0,'Parent',ax_xyz)
rotate(arrow_z0,...
 [0,0,1],...
 -90,...
 [0;0;ZLim(1)])
%--- ax_xyz.XLabel ---

text(mean(XLim), 1.25*YLim(1), ZLim(1)-20,...
 'x',...
 'Parent',ax_xyz,...
 'FontName','Times',...
 'FontSize',16,...
 'Color','b',...
 'FontAngle','italic',...
 'HorizontalAlignment','center')
%--- ax_xyz.YLabel ---

text(1.3*XLim(2), mean(YLim), ZLim(1)-20,...
 'y',...
 'Parent',ax_xyz,...
 'FontName','Times',...
 'FontSize', 16,...
 'Color','b',...
 'FontAngle','italic',...
 'HorizontalAlignment','center')
%--- ax_xyz.ZLabel ---

text(XLim(1)-40, 1.15*YLim(1), mean(ZLim),...
 'z',...
 'Parent',ax_xyz,...

138

 'FontName','Times',...
 'FontSize', 16,...
 'Color','b',...
 'FontAngle','italic',...
 'HorizontalAlignment','center')
%% --- Calculate the coordinates: B{*}, C{*} -------------------

for i=1:3
 Pt = inv_M{i}*Pref(1,:)';
 a = Pt(1) +Lh;
 b = Pt(2);
 c = Pt(3);
 alpha = (Lr-a)/c;
 beta = (a*a +b*b +c*c +La*La -Lb*Lb -Lr*Lr)/c*0.5;
 gamma = Lr -alpha*alpha;
 sigma = 1 +alpha*alpha;
 x_b = (gamma...
 +sqrt(gamma*gamma-sigma*(Lr*Lr+beta*beta-La*La)))...
 /(1+alpha*alpha);
 z_b = alpha*x_b +beta;
 theta = asind(-z_b/La);
 theta_A(i) = theta;
 Bt = [Lr+La*cosd(theta); 0; -La*sind(theta)];
 B{i} = M{i}*Bt;
 C{i} = M{i}*[Lh; 0; 0] +Pref(1,:)';
end
for i=1:3
 text_A(i) = text('parent',ax_xyz,...
 'Position',A{i}+[0;0;70],...
 'HorizontalAlignment','Center',...
 'FontName','Times New Roman',...
 'FontSize',14,...
 'Color',[1,1,0],...
 'String',['\bfA_',num2str(i)]);
end
%% --- LINK_A --

Ra = 0.02*XLength;
LINK_A_height = [0;0.02*XLength; 0];
Xa = [zeros(2*N_sides,1);
 Ra*cosd(linspace(270,90,N_sides))';...
 Ra*cosd(linspace(90,-90,N_sides))'+La*ones(N_sides,1);...
 Ra*cosd(linspace(270,90,N_sides))';...
 Ra*cosd(linspace(90,-90,N_sides))'+La*ones(N_sides,1);...
 zeros(2*N_sides,1)];
Ya = [zeros(2*N_sides,1);
 Ra*sind(linspace(270,90,N_sides))';...
 Ra*sind(linspace(90,-90,N_sides))';...
 Ra*sind(linspace(270,90,N_sides))';...
 Ra*sind(linspace(90,-90,N_sides))';...
 zeros(2*N_sides,1);];
%---

LINK_A0 = CREAT_M_PLATE(...
 [0; 0; -0.5*LINK_A_height(2)],...
 Xa,...

139

 Ya,...
 LINK_A_height,...
 LINK_A_color,...
 'off');
rotate(LINK_A0, [1,0,0], 90, [0,0,0])
set(LINK_A0, 'Parent',ax_xyz)
for i=1:3
 LINK_A(i) = copyobj(LINK_A0, gca);
 set(LINK_A(i), 'Visible','on');
 rotate(LINK_A(i), [0,0,1], psi(i), [0,0,0])
 V_LINK_A0{i} = get(LINK_A(i),'Vertices');
 for j=1:3
 V_LINK_A0{i}(:,j) = V_LINK_A0{i}(:,j) +A{i}(j);
 end
 set(LINK_A(i), 'Vertices',V_LINK_A0{i})
end
%% --- LINK_B (Parallel four-bar linkage: long side) -----------

LINK_B0 = CREAT_CYLINDER(...
 [0; 0; 0],...
 radius_Lb*[0; 1; 1; 0],...
 [0; Lb; 0],...
 N_sides,...
 LINK_B_color,...
 'off');
set(LINK_B0, 'Parent',ax_xyz)
V_LINK_B = cell(3,2);
for i=1:3
 for j=1:2
 LINK_B(i,j) = copyobj(LINK_B0, gca);
 set(LINK_B(i,j), 'Visible','on')
 rotate(LINK_B(i,j), [0,1,0],...
 acosd((B{i}(3)-C{i}(3))/Lb), [0,0,0])
 rotate(LINK_B(i,j), [0,0,1], -psi(i), [0,0,0])
 rotate(LINK_B(i,j), [0,0,1],...
 atan2d((B{i}(2)-C{i}(2)), (B{i}(1)-C{i}(1))),
[0,0,0])
 rotate(LINK_B(i,j), [0,0,1], psi(i), [0,0,0])
 V_LINK_B{i,j} = get(LINK_B(i,j),'Vertices');
 switch j
 case 1
 V_LINK_B{i,j}(:,1) =
V_LINK_B{i,j}(:,1)+C{i}(1)...
 +Vector_Bs{i}(1);
 V_LINK_B{i,j}(:,2) =
V_LINK_B{i,j}(:,2)+C{i}(2)...
 +Vector_Bs{i}(2);
 V_LINK_B{i,j}(:,3) =
V_LINK_B{i,j}(:,3)+C{i}(3)...
 +Vector_Bs{i}(3);
 case 2
 V_LINK_B{i,j}(:,1) =
V_LINK_B{i,j}(:,1)+C{i}(1)...
 -Vector_Bs{i}(1);
 V_LINK_B{i,j}(:,2) =
V_LINK_B{i,j}(:,2)+C{i}(2)...

140

 -Vector_Bs{i}(2);
 V_LINK_B{i,j}(:,3) =
V_LINK_B{i,j}(:,3)+C{i}(3)...
 -Vector_Bs{i}(3);
 end
 set(LINK_B(i,j), 'Vertices',V_LINK_B{i,j})
 end
end
V_LINK_B0 = V_LINK_B;
%% --- LINK_Bs (Parallel four-bar linkage: short side) ---------

LINK_Bs0 = CREAT_CYLINDER(...
 [0; 0; -0.5*Lb_s],...
 radius_Lb_s*[0;1;1;0],...
 [0; Lb_s; 0],...
 N_sides,...
 LINK_B_color,...
 'off');
rotate(LINK_Bs0, [1,0,0], 90, [0,0,0])
set(LINK_Bs0, 'Parent',ax_xyz)
V_LINK_Bs = cell(3,2);
for i=1:3
 for j=1:2
 LINK_Bs(i,j) = copyobj(LINK_Bs0, gca);
 set(LINK_Bs(i,j), 'Visible','on')
 rotate(LINK_Bs(i,j), [0,0,1], psi(i), [0,0,0])
 V_LINK_Bs{i,j} = get(LINK_Bs(i,j),'Vertices');
 switch j
 case 1
 V_LINK_Bs{i,j}(:,1) =
V_LINK_Bs{i,j}(:,1)+B{i}(1);
 V_LINK_Bs{i,j}(:,2) =
V_LINK_Bs{i,j}(:,2)+B{i}(2);
 V_LINK_Bs{i,j}(:,3) =
V_LINK_Bs{i,j}(:,3)+B{i}(3);
 case 2
 V_LINK_Bs{i,j}(:,1) =
V_LINK_Bs{i,j}(:,1)+C{i}(1);
 V_LINK_Bs{i,j}(:,2) =
V_LINK_Bs{i,j}(:,2)+C{i}(2);
 V_LINK_Bs{i,j}(:,3) =
V_LINK_Bs{i,j}(:,3)+C{i}(3);
 end
 set(LINK_Bs(i,j), 'Vertices',V_LINK_Bs{i,j})
 end
end
V_LINK_Bs0 = V_LINK_Bs;
%% --- BALLJOINT ---

BJ_radius = radius_BALL*cosd(-90:10:90);
BJ_height = radius_BALL*(sind(-80:10:90) -sind(-90:10:80));
%---

BALLJOINT_B0 = CREAT_CYLINDER(...
 [0; 0; -radius_BALL],...
 BJ_radius,...

141

 BJ_height,...
 N_sides,...
 BALLJOINT_color,...
 'off');
set(BALLJOINT_B0, 'Parent',ax_xyz)
%---

BALLJOINT_C0 = CREAT_CYLINDER(...
 [0; 0; -0.5*Ra],...
 BJ_radius,...
 BJ_height,...
 N_sides,...
 BALLJOINT_color,...
 'off');
set(BALLJOINT_C0, 'Parent',ax_xyz)
V_BALLJOINT_B = cell(3,2);
V_BALLJOINT_C = cell(3,2);
for i=1:3
 for j=1:2
 %---

 BALLJOINT_B(i,j) = copyobj(BALLJOINT_B0, gca);
 set(BALLJOINT_B(i,j), 'Visible','on')
 V_BALLJOINT_B{i,j} = get(BALLJOINT_B(i,j),'Vertices');
 V_BALLJOINT_B{i,j}(:,1) =
V_BALLJOINT_B{i,j}(:,1)+B{i}(1)...
 -(-1)^j*Vector_Bs{i}(1);
 V_BALLJOINT_B{i,j}(:,2) =
V_BALLJOINT_B{i,j}(:,2)+B{i}(2)...
 -(-1)^j*Vector_Bs{i}(2);
 V_BALLJOINT_B{i,j}(:,3) =
V_BALLJOINT_B{i,j}(:,3)+B{i}(3)...
 -(-1)^j*Vector_Bs{i}(3);
 set(BALLJOINT_B(i,j), 'Vertices',V_BALLJOINT_B{i,j})
 %---

 BALLJOINT_C(i,j) = copyobj(BALLJOINT_C0, gca);
 set(BALLJOINT_C(i,j), 'Visible','on')
 V_BALLJOINT_C{i,j} = get(BALLJOINT_C(i,j),'Vertices');
 V_BALLJOINT_C{i,j}(:,1) =
V_BALLJOINT_C{i,j}(:,1)+C{i}(1)...
 -(-1)^j*Vector_Bs{i}(1);
 V_BALLJOINT_C{i,j}(:,2) =
V_BALLJOINT_C{i,j}(:,2)+C{i}(2)...
 -(-1)^j*Vector_Bs{i}(2);
 V_BALLJOINT_C{i,j}(:,3) =
V_BALLJOINT_C{i,j}(:,3)+C{i}(3)...
 -(-1)^j*Vector_Bs{i}(3);
 set(BALLJOINT_C(i,j), 'Vertices',V_BALLJOINT_C{i,j})
 %---

 end
end
V_BALLJOINT_B0 = V_BALLJOINT_B;
V_BALLJOINT_C0 = V_BALLJOINT_C;

142

%% --- PLATE_C (Bottom tool mounting plate) --------------------

TH = (30:60:330)';
Pr = (Lh-1.5*radius_BALL)/cosd(30);
Px = Pr*cosd(TH);
Py = Pr*sind(TH);
N = 6;
X1 = linspace(Px(1), Px(2), N)';
X2 = linspace(Px(2), Px(3), N)';
X3 = linspace(Px(3), Px(4), N)';
X4 = linspace(Px(4), Px(5), N)';
X5 = linspace(Px(5), Px(6), N)';
X6 = linspace(Px(6), Px(1), N)';
X7 = 0.25*Pr*cosd(linspace(30,30+360,3*(N+N)-5))';
Y1 = linspace(Py(1), Py(2), N)';
Y2 = linspace(Py(2), Py(3), N)';
Y3 = linspace(Py(3), Py(4), N)';
Y4 = linspace(Py(4), Py(5), N)';
Y5 = linspace(Py(5), Py(6), N)';
Y6 = linspace(Py(6), Py(1), N)';
Y7 = 0.25*Pr*sind(linspace(30,30+360,3*(N+N)-5))';
X16 = [X1(1:end-1); X2(1:end-1); X3(1:end-1);...
 X4(1:end-1); X5(1:end-1); X6];
Y16 = [Y1(1:end-1); Y2(1:end-1); Y3(1:end-1);...
 Y4(1:end-1); Y5(1:end-1); Y6];
XX = [X16; X7; X7; X16; X16];
YY = [Y16; Y7; Y7; Y16; Y16];
PLATE_C0 = CREAT_M_PLATE(...
 [0, 0, 0],...
 XX,...
 YY,...
 [0, -thickness_PLATE, 0, thickness_PLATE],...
 PLATE_C_color,...
 'off');
PLATE_C = copyobj(PLATE_C0, gca);
set(PLATE_C, 'Visible','on');
V_PLATE_C = get(PLATE_C0,'Vertices');
V_PLATE_C(:,1) = V_PLATE_C(:,1) +Xref(1);
V_PLATE_C(:,2) = V_PLATE_C(:,2) +Yref(1);
V_PLATE_C(:,3) = V_PLATE_C(:,3) +Zref(1);
set(PLATE_C, 'Vertices',V_PLATE_C)
V_PLATE_C0 = V_PLATE_C;
% set(PLATE_A_center, 'EdgeColor', [1,0,0])
%% --- CONNECTOR_PC --

Ph = Lh-1.5*radius_BALL;
length_PC = 0.5*Lh;
width_PC = 0.5*Lh;
CONNECTER_C0 = CREAT_CUBOID([Ph-Lh, -0.5*width_PC, -
0.5*thickness_PLATE],...
 length_PC,...
 width_PC,...
 thickness_PLATE,...
 PLATE_C_color,...
 'off');
V_CONNECTER_C = cell(3,1);

143

for i=1:3
 CONNECTER_PC(i) = copyobj(CONNECTER_C0, gca);
 set(CONNECTER_PC(i), 'Visible','on');
 rotate(CONNECTER_PC(i), [0,0,1], psi(i), [0,0,0]);
 V_CONNECTER_C{i} = get(CONNECTER_PC(i),'Vertices');
 V_CONNECTER_C{i}(:,1) = V_CONNECTER_C{i}(:,1) +C{i}(1);
 V_CONNECTER_C{i}(:,2) = V_CONNECTER_C{i}(:,2) +C{i}(2);
 V_CONNECTER_C{i}(:,3) = V_CONNECTER_C{i}(:,3) +C{i}(3)...
 -0.5*thickness_PLATE;
 set(CONNECTER_PC(i), 'Vertices', V_CONNECTER_C{i});
end
V_CONNECTER_PC0 = V_CONNECTER_C;
%% --- MOTOR_MOUNT (Servo motor mount) -------------------------

length_motor_base = 100;
width_motor_base = 80;
thickness_motor_base = 0.8*thickness_PLATE;
X0 = zeros(1,9);
Y0 = zeros(1,9);
X1 = [0, 0,... (1,2)
 thickness_motor_base, thickness_motor_base,...(3,4)
 thickness_motor_base, thickness_motor_base,...(5,6)
 0, 0, 0]; % (7,8,1)
Y1 = [-0.5*width_motor_base, -0.5*width_motor_base,...(1,2)
 -0.5*width_motor_base, -0.5*width_motor_base,...(3,4)
 0.5*width_motor_base, 0.5*width_motor_base,...(5,6)
 0.5*width_motor_base, 0.5*width_motor_base,...(7,8)
 -0.5*width_motor_base]; % (1)
X2 = [0, 0,...(1,2)
 thickness_motor_base, thickness_motor_base,...(3,4)
 thickness_motor_base, thickness_motor_base,...(5,6)
 0, 0, 0]; % (7,8,1)
Y2 = [-0.5*width_motor_base, -0.5*width_motor_base,...(1,2)
 -0.5*width_motor_base,...(3)
 -0.5*width_motor_base+thickness_motor_base,...(4)
 0.5*width_motor_base-thickness_motor_base,...(5)
 0.5*width_motor_base, 0.5*width_motor_base,...(6,7)
 0.5*width_motor_base, -0.5*width_motor_base]; % (8,1)
X3a = [0, 0.5*width_motor_base,...(1,2)
 0.5*width_motor_base, thickness_motor_base,...(3,4)
 thickness_motor_base, 0.5*width_motor_base,...(5,6)
 0.5*width_motor_base, 0, 0]; % (7,8,1)
X3b = X3a;
Y3a = [-0.5*width_motor_base, -0.5*width_motor_base,...(1,2)
 -0.5*width_motor_base+thickness_motor_base,...(3)
 -0.5*width_motor_base+thickness_motor_base,...(4)
 0.5*width_motor_base-thickness_motor_base,...(5)
 0.5*width_motor_base-thickness_motor_base,...(6)
 0.5*width_motor_base, 0.5*width_motor_base,...(7,8)
 -0.5*width_motor_base]; % (1)
Y3b = Y3a;
X4 = [0, 0,...(1,2)
 length_motor_base, length_motor_base,...(3,4)
 length_motor_base, length_motor_base,...(5,6)
 0, 0, 0]; % (7,8,1)
Y4 = [-0.5*width_motor_base, -0.5*width_motor_base,...(1,2)

144

 -0.5*width_motor_base, -0.5*width_motor_base,...(3,4)
 0.5*width_motor_base, 0.5*width_motor_base,...(5,6)
 0.5*width_motor_base, 0.5*width_motor_base,...(7,8)
 -0.5*width_motor_base]; % (1)
X5 = zeros(size(X4));
Y5 = zeros(size(Y4));
X = [X5, X4, X4, X3b, X3a, X2, X1, X0] +0.7*Lb_s;
Y = [Y5, Y4, Y4, Y3b, Y3a, Y2, Y1, Y0];
HEIGHT = [0, thickness_motor_base, 0, 0,...
 0.5*width_motor_base-thickness_motor_base,...
 0.5*width_motor_base, 0];
MOTOR_SUP0 = CREAT_M_PLATE(...
 [0,0,-0.5*width_motor_base],...
 X,...
 Y,...
 HEIGHT,...
 MOTOR_SUP_color);
rotate(MOTOR_SUP0, [0,0,1], 90, [0,0,0])
set(MOTOR_SUP0, 'Parent', ax_xyz, 'Visible','off')
V_MOTOR_BASE = cell(3,1);
for i=1:3
 MOTOR_MOUNT(i) = copyobj(MOTOR_SUP0,gca);

set(MOTOR_MOUNT(i),'Tag',['MOTOR_MOUNT',num2str(i)],'Visible','o
n')
 rotate(MOTOR_MOUNT(i), [0,0,1], psi(i), [0,0,0])
 V_MOTOR_BASE{i} = get(MOTOR_MOUNT(i),'Vertices');
 V_MOTOR_BASE{i}(:,1) = V_MOTOR_BASE{i}(:,1) +A{i}(1);
 V_MOTOR_BASE{i}(:,2) = V_MOTOR_BASE{i}(:,2) +A{i}(2);
 switch 1
 case 1 % Installation face down
 V_MOTOR_BASE{i}(:,3) = V_MOTOR_BASE{i}(:,3)
+A{i}(3);
 case 2 % Installation face up
 V_MOTOR_BASE{i}(:,3) = -V_MOTOR_BASE{i}(:,3) -
A{i}(3);
 end
 set(MOTOR_MOUNT(i), 'Vertices',V_MOTOR_BASE{i})
end
%% --- MOTOR (Servo motor) -------------------------------------

shaft_radius = 6;
corner_radius = 10;

N4 = 8;
N8 = N4/2;
points_per_loop = 4*N4; % 4*100;

RL = 20;
ML = 30;

COS_M = cosd(linspace(-135, 225, points_per_loop));
SIN_M = sind(linspace(-135, 225, points_per_loop));
X0 = zeros(1,points_per_loop);
Y0 = X0;
X1 = shaft_radius*COS_M;

145

Y1 = shaft_radius*SIN_M;
X2 = X1;
Y2 = Y1;
X3 = RL*COS_M;
Y3 = RL*SIN_M;
X4 = X3;
Y4 = Y3;
X5 = [corner_radius*cosd(linspace(45,0,N8))-ML, ML-
corner_radius,...
 corner_radius*cosd(linspace(180,135,N8-1))+ML,...
 corner_radius*cosd(linspace(135,90,N8))+ML, ML,...
 corner_radius*cosd(linspace(270,225,N8-1))+ML,...
 corner_radius*cosd(linspace(225,180,N8))+ML, -
ML+corner_radius,...
 corner_radius*cosd(linspace(0,-45,N8-1))-ML,...
 corner_radius*cosd(linspace(-45,-90,N8))-ML, -ML,...
 corner_radius*cosd(linspace(90,45,N8-1))-ML];
Y5 = [corner_radius*sind(linspace(45,0,N8))-ML, -ML,...
 corner_radius*sind(linspace(180,135,N8-1))-ML,...
 corner_radius*sind(linspace(135,90,N8))-ML, ML-
corner_radius,...
 corner_radius*sind(linspace(270,225,N8-1))+ML,...
 corner_radius*sind(linspace(225,180,N8))+ML, ML,...
 corner_radius*sind(linspace(0,-45,N8-1))+ML,...
 corner_radius*sind(linspace(-45,-90,N8))+ML, -
ML+corner_radius,...
 corner_radius*sind(linspace(90,45,N8-1))-ML];
X6 = X5;
Y6 = Y5;

X7 = [linspace(-ML,ML,N4), ML*ones(1,N4),...
 linspace(ML,-ML,N4), -ML*ones(1,N4)];
Y7 = [-ML*ones(1,N4), linspace(-ML,ML,N4),...
 ML*ones(1,N4), linspace(ML,-ML,N4)];
X8 = X7;
Y8 = Y7;
X9 = X5;
Y9 = Y5;
X10 = X5;
Y10 = Y5;
X11 = RL*COS_M;
Y11 = RL*SIN_M;
X12 = zeros(1,points_per_loop);
Y12 = zeros(1,points_per_loop);
X = [X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12];
Y = [Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12];
HEIGHT = [0, 0.7*Lb_s-0.1, 0, 3, 0, 5, 0, 80, 0, 15, 0,
0];
MOTOR0 = CREAT_M_PLATE(...
 [0, 0, 0],...
 X,...
 Y,...
 HEIGHT,...
 MOTOR_color);
rotate(MOTOR0, [1,0,0], -90, [0,0,0])
set(MOTOR0, 'Parent',ax_xyz, 'Visible','off')

146

V_MOTOR = cell(3,1);
for i=1:3
 MOTOR(i) = copyobj(MOTOR0, gca);
 set(MOTOR(i),'Tag',['MOTOR',num2str(i)],'Visible','on')
 rotate(MOTOR(i), [0,0,1], psi(i), [0,0,0])
 V_MOTOR{i} = get(MOTOR(i),'Vertices');
 V_MOTOR{i}(:,1) = V_MOTOR{i}(:,1) +A{i}(1);
 V_MOTOR{i}(:,2) = V_MOTOR{i}(:,2) +A{i}(2);
 V_MOTOR{i}(:,3) = V_MOTOR{i}(:,3) +A{i}(3);
 set(MOTOR(i), 'Vertices',V_MOTOR{i})
end
%% --- PLATE_A ---

N = 20;
N2 = N+N;
N3 = N2+N;
N4 = N3+N;
Rmax = 1.05*norm(A{1}+A{2}-A{3});
Rmid = 0.38*Rmax;
Rmin = 0.25*Rmid;
%---

Pa = cell(3,1);
Pb = cell(3,1);
Pc = cell(3,1);
Pd = cell(3,1);
for i1=1:3
 Pa{i1} = M{i1}*[Rmax; 0.7*Lb_s; 0];
 Pb{i1} = M{i1}*[Rmid; 0.7*Lb_s; 0];
 Pc{i1} = M{i1}*[Rmid; -0.7*Lb_s; 0];
 Pd{i1} = M{i1}*[Rmax; -0.7*Lb_s; 0];
end
% text(Pa{1}(1),Pa{1}(2),Pa{1}(3),'a','Color','m')
% text(Pb{1}(1),Pb{1}(2),Pb{1}(3),'b','Color','m')
% text(Pc{1}(1),Pc{1}(2),Pc{1}(3),'c','Color','m')
% text(Pd{1}(1),Pd{1}(2),Pd{1}(3),'d','Color','m')
th_1a = atan2d(Pa{1}(2), Pa{1}(1));
th_2d = atan2d(Pd{2}(2), Pd{2}(1));
%---

X1 = Pa{1}(1)*cosd(linspace(th_2d, th_1a, N))';
X2 = linspace(Pb{1}(1), Pc{2}(1), N)';
X3 = X1;
X4 = X2;
Y1 = Pa{1}(1)*sind(linspace(th_2d, th_1a, N))';
Y2 = linspace(Pb{1}(2), Pc{2}(2), N)';
Y3 = Y1;
Y4 = Y2;
X = [X1; X2; X3; X4];
Y = [Y1; Y2; Y3; Y4];
Z = [zeros(N2,1); thickness_PLATE*ones(N2,1)]...
 -0.5*width_motor_base -thickness_PLATE;
F1 = [(1:N-1)', (2:N)', (N2-1:-1:N+1)', (N2:-1:N+2)'];
F2 = [(1:N-1)', (N2+1:N3-1)', (N2+2:N3)', (2:N)'];
F3 = [(1:N-1)', (2:N)', (N2-1:-1:N+1)', (N2:-1:N+2)']+N2;
F4 = [1, N2, N4, N2+1];

147

F5 = [N, N+1, N3+1, N3];
F = [F1; F2; F3; F4; F5];
%---

PLATE_A0 = patch(...
 'Faces',F,...
 'Vertices',[X,Y,Z],...
 'FaceColor',PLATE_A_color,...
 'EdgeColor','none');
V_PLATE_A0 = get(PLATE_A0, 'Vertices');
V_PLATE_A0(:,3) = V_PLATE_A0(:,3);
set(PLATE_A0, 'Vertices', V_PLATE_A0)
set(PLATE_A0, 'Parent',ax_xyz, 'Visible','off')
PLATE_A = zeros(3,1);
for i1=1:3
 PLATE_A(i1) = copyobj(PLATE_A0, gca);
 set(PLATE_A(i1), 'Visible','on', 'FaceAlpha',face_alpha)
 rotate(PLATE_A(i1), [0,0,1], psi(i1), [0,0,0])
end
%---

approxi_dis = (norm(Pb{1}-Pc{2}) +norm(Pc{2}-Pb{2}))/N2;
Nbc = round(norm(Pb{1}-Pc{2})/approxi_dis);
Ncb = round(norm(Pc{2}-Pb{2})/approxi_dis);
X1 = linspace(Pb{1}(1), Pc{2}(1), Nbc)';
X2 = linspace(Pc{2}(1), Pb{2}(1), Ncb)';
X3 = linspace(Pb{2}(1), Pc{3}(1), Nbc)';
X4 = linspace(Pc{3}(1), Pb{3}(1), Ncb)';
X5 = linspace(Pb{3}(1), Pc{1}(1), Nbc)';
X6 = linspace(Pc{1}(1), Pb{1}(1), Ncb)';
X7 = Rmin*cosd(linspace(th_1a,th_1a+360,3*(Nbc+Ncb)-5))';
Y1 = linspace(Pb{1}(2), Pc{2}(2), Nbc)';
Y2 = linspace(Pc{2}(2), Pb{2}(2), Ncb)';
Y3 = linspace(Pb{2}(2), Pc{3}(2), Nbc)';
Y4 = linspace(Pc{3}(2), Pb{3}(2), Ncb)';
Y5 = linspace(Pb{3}(2), Pc{1}(2), Nbc)';
Y6 = linspace(Pc{1}(2), Pb{1}(2), Ncb)';
Y7 = Rmin*sind(linspace(th_1a,th_1a+360,3*(Nbc+Ncb)-5))';
X = [X1(1:end-1); X2(1:end-1); X3(1:end-1);...
 X4(1:end-1); X5(1:end-1); X6];
Y = [Y1(1:end-1); Y2(1:end-1); Y3(1:end-1);...
 Y4(1:end-1); Y5(1:end-1); Y6];
XX = [X; X7; X7; X];
YY = [Y; Y7; Y7; Y];
PLATE_A_center = CREAT_M_PLATE(...
 [0,0,-0.5*width_motor_base],...
 XX,...
 YY,...
 [0, -thickness_PLATE, 0],...
 PLATE_A_color);
set(PLATE_A_center, 'Visible','on', 'FaceAlpha',face_alpha)
% set(PLATE_A_center, 'EdgeColor', [1,0,0])
%% --- COVER ---

height_cover = 1.2*width_motor_base;
r0 = 0.25*height_cover;

148

Rmax = Pa{1}(1);
Xin = linspace(Pc{2}(1), Pb{1}(1), N)';
Yin = linspace(Pc{2}(2), Pb{1}(2), N)';
COS_TH = cosd(linspace(th_2d, th_1a, N))';
SIN_TH = sind(linspace(th_2d, th_1a, N))';
X1 = Rmax*COS_TH;
deg = 0:10:90;
Ri = Rmax-r0 +r0*cosd(deg)';
X = X1;
for i1=1:length(deg)
 X = [X; Ri(i1)*COS_TH];
end
X = [X; Xin];
%---

Y1 = Rmax*SIN_TH;
Y = Y1;
for i1=1:length(deg)
 Y = [Y; Ri(i1)*SIN_TH];
end
Y = [Y; Yin];
%---

HEIGHT = [0, height_cover-r0, height_cover-r0+r0*sind(10:10:90),
height_cover]';
Z = zeros(size(X1));
F = [(1:N-1)',(2:N)',(N+2:N2)',(N+1:N2-1)'];
for i1=1:length(HEIGHT)-1
 Z = [Z; HEIGHT(i1+1)*ones(N,1)];
 Ni1 = N*(i1-1);
 F = [F; [(1:N-1)',(2:N)',(N+2:N2)',(N+1:N2-1)']+Ni1];
end
Z = Z -0.5*width_motor_base;
for i1=2:length(HEIGHT)-1
 iN = i1*N;
 Y(iN) = Pa{1}(2);
end
dxy = 0.5*(Pb{2}-Pc{2});
xc = dxy(1);
yc = dxy(2);
XR = X(N:N:length(HEIGHT)*N);
YR = Y(N:N:length(HEIGHT)*N) -0.5*norm(Pb{1}(2)-Pc{1}(2));
ZR = Z(N:N:length(HEIGHT)*N);
for i1=1:length(XR)
 iN = i1*N;
 xy = [cosd(120),-sind(120); sind(120),cosd(120)]*[XR(i1);
YR(i1)];
 X(iN-N+1) = xy(1)-xc;
 Y(iN-N+1) = xy(2)-yc;
end
%---

hold on
COVER_Uab1 = fill3(...
 [XR; Pb{1}(1); XR(1)],...
 [YR; 0; 0] +Pb{1}(2)-1,...

149

 [ZR; ZR(1); ZR(1)],...
 COVER_color);
set(COVER_Uab1,...

'EdgeColor',COVER_color*0.75,...'EdgeColor','y','LineWidth',1,..
.
 'FaceColor',COVER_color,...
 'FaceAlpha',COVER_face_alpha)
COVER_Uab2 = copyobj(COVER_Uab1, gca);
rotate(COVER_Uab2, [0,0,1], 120, [0,0,0])
COVER_Uab3 = copyobj(COVER_Uab1, gca);
rotate(COVER_Uab3, [0,0,1], -120, [0,0,0])
%---

COVER_Ucd1 = fill3(...
 [XR; Pb{1}(1); XR(1)],...
 [YR; 0; 0] +Pc{1}(2)+1,...
 [ZR; ZR(1); ZR(1)],...
 COVER_color);
set(COVER_Ucd1,...

'EdgeColor',COVER_color*0.75,...'EdgeColor','m','LineWidth',1,..
.
 'FaceColor',COVER_color,...
 'FaceAlpha',COVER_face_alpha)
COVER_Ucd2 = copyobj(COVER_Ucd1, gca);
rotate(COVER_Ucd2, [0,0,1], 120, [0,0,0])
COVER_Ucd3 = copyobj(COVER_Ucd1, gca);
rotate(COVER_Ucd3, [0,0,1], -120, [0,0,0])
%---

COVER_Ubc1 = fill3(...
 [Pb{1}(1), Pb{1}(1), Pc{1}(1), Pc{1}(1)],...
 [Pb{1}(2), Pb{1}(2), Pc{1}(2), Pc{1}(2)],...
 [0, height_cover, height_cover, 0]-0.5*width_motor_base,...
 COVER_color);
set(COVER_Ubc1,...

'EdgeColor',COVER_color*0.75,...'EdgeColor','w','LineWidth',1,..
.
 'FaceColor',COVER_color,...
 'FaceAlpha',COVER_face_alpha)
COVER_Ubc2 = copyobj(COVER_Ubc1, gca);
rotate(COVER_Ubc2, [0,0,1], 120, [0,0,0])
COVER_Ubc3 = copyobj(COVER_Ubc1, gca);
rotate(COVER_Ubc3, [0,0,1], -120, [0,0,0])
%---

COVER1 = patch(...
 'Faces',F,...
 'Vertices',[X,Y,Z],...
 'FaceColor',COVER_color,...
 'EdgeColor','none',...'EdgeColor',COVER_color,...
 'Visible','on');
set(COVER1, 'FaceAlpha', COVER_face_alpha)
COVER2 = copyobj(COVER1, gca);

150

rotate(COVER2, [0,0,1],120,[0,0,0])
COVER3 = copyobj(COVER1, gca);
rotate(COVER3, [0,0,1],-120,[0,0,0])
%---

X = [Pc{1}(1); Pb{1}(1); Pc{2}(1); Pb{2}(1); Pc{3}(1);
Pb{3}(1); Pc{1}(1);...
 zeros(7,1)];
Y = [Pc{1}(2); Pb{1}(2); Pc{2}(2); Pb{2}(2); Pc{3}(2);
Pb{3}(2); Pc{1}(2);...
 zeros(7,1)];
Z = (height_cover-0.5*width_motor_base)*ones(size(X));
F = [...
 1,2,13,14;
 2,3,12,13;
 3,4,11,12;
 4,5,10,11;
 5,6, 9,10;
 6,7, 8, 9];
COVER0 = patch(...
 'Faces',F,...
 'Vertices',[X,Y,Z],...
 'FaceColor',COVER_color,...
 'EdgeColor','none',...'EdgeColor','g',...
 'Visible','on');
set(COVER0, 'FaceAlpha', COVER_face_alpha)
hold off
%% --- Set 3D visual conditions --------------------------------

camlight right
material metal
lighting gouraud
set(gcf,'Renderer','OpenGL');
drawnow
end % END: function CREAT_FIGURE1

%% === function: CREAT_FIGURE2 --> Time responses
=========================
function CREAT_FIGURE2
global Line_Theta1 Line_Theta2 Line_Theta3
global Line_X Line_Y Line_Z
global line_width
global path_color
global marker_size marker_color
fig2 = figure;
set(fig2,...
 'Tag','fig2',...
 'NumberTitle','off',...
 'Name','Time Responses',...
 'BackingStore','off',...
 'ToolBar','figure',...
 'Color',[0.85, 0.95, 0.85],...
 'Unit','Normalized',...
 'OuterPosition',[0.533, 0.04, 0.472, 0.96]);
%--- Creat axes objects --

151

ax_theta1 = subplot(321);
h321 = ylabel('\theta_{1}');
h321.FontSize = 12;
h321.FontName = 'Times New Roman';
h321.Color = 'b';
h321.Rotation = 0;
h321.HorizontalAlignment = 'right';
h321.VerticalAlignment = 'middle';
grid on
set(ax_theta1,...
 'Parent',fig2,...
 'Tag','ax_theta1',...
 'XLim',[0,inf],...
 'FontName','Times New Roman',...
 'FontSize',12,...
 'Box','on');
Line_Theta1 = animatedline(...
 'Parent',ax_theta1,...
 'Tag','Line_Theta1',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
ax_theta2 = subplot(323);
h323 = ylabel('\theta_{2}');
h323.FontSize = 12;
h323.FontName = 'Times New Roman';
h323.Color = 'b';
h323.Rotation = 0;
h323.HorizontalAlignment = 'right';
h323.VerticalAlignment = 'middle';
grid on
set(ax_theta2,...
 'Parent',fig2,...
 'Tag','ax_theta2',...
 'XLim',[0,inf],...
 'FontName','Times New Roman',...
 'FontSize',12,...
 'Box','on');
Line_Theta2 = animatedline(...
 'Parent',ax_theta2,...
 'Tag','Line_Theta2',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
ax_theta3 = subplot(325);
h325 = ylabel('\theta_{3}');
h325.FontSize = 12;
h325.FontName = 'Times New Roman';
h325.Color = 'b';
h325.Rotation = 0;
h325.HorizontalAlignment = 'right';
h325.VerticalAlignment = 'middle';

152

grid on
set(ax_theta3,...
 'Parent',fig2,...
 'Tag','ax_theta3',...
 'FontName','Times New Roman',...
 'XLim',[0,inf],...
 'FontSize',12,...
 'Box','on');
Line_Theta3 = animatedline(...
 'Parent',ax_theta3,...
 'Tag','Line_Theta3',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
h325x = xlabel('Time (s)');
h325x.FontSize = 12;
h325x.FontName = 'Times New Roman';
h325x.Color = 'b';
%---

ax_x = subplot(322);
h322 = ylabel('\it{x}');
h322.FontSize = 12;
h322.FontName = 'Times New Roman';
h322.Color = 'b';
h322.Rotation = 0;
h322.HorizontalAlignment = 'left';
h322.VerticalAlignment = 'middle';
grid on
set(ax_x,...
 'Parent',fig2,...
 'Tag','ax_x',...
 'FontName','Times New Roman',...
 'YAxisLocation','right',...
 'XLim',[0,inf],...
 'FontSize',12,...
 'Box','on');
Line_X = animatedline(...
 'Parent',ax_x,...
 'Tag','Line_X',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
ax_y = subplot(324);
h324 = ylabel('\it{y}');
h324.FontSize = 12;
h324.FontName = 'Times New Roman';
h324.Color = 'b';
h324.Rotation = 0;
h324.HorizontalAlignment = 'left';
h324.VerticalAlignment = 'middle';
grid on

153

set(ax_y,...
 'Parent',fig2,...
 'Tag','ax_y',...
 'FontName','Times New Roman',...
 'YAxisLocation','right',...
 'XLim',[0,inf],...
 'FontSize',12,...
 'Box','on');
Line_Y = animatedline(...
 'Parent',ax_y,...
 'Tag','Line_Y',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
ax_z = subplot(326);
h326 = ylabel('\it{z}');
h326.FontSize = 12;
h326.FontName = 'Times New Roman';
h326.Color = 'b';
h326.Rotation = 0;
h326.HorizontalAlignment = 'left';
h326.VerticalAlignment = 'middle';
grid on
set(ax_z,...
 'Parent',fig2,...
 'Tag','ax_z',...
 'FontName','Times New Roman',...
 'YAxisLocation','right',...
 'XLim',[0,inf],...
 'FontSize',12,...
 'Box','on');
Line_Z = animatedline(...
 'Parent',ax_z,...
 'Tag','Line_Z',...
 'Color',path_color,...
 'Marker','.',...
 'MarkerSize',marker_size,...
 'MarkerEdgeColor',marker_color,...
 'LineWidth',line_width);
h326x = xlabel('Time (s)');
h326x.FontSize = 12;
h326x.FontName = 'Times New Roman';
h326x.Color = 'b';
%---

drawnow
end % END: function CREAT_FIGURE2

%% === function: CREAT_FIGURE3 --> UI
=====================================
function CREAT_FIGURE3
global trajectory
%--- Creat UI: fig3 --

154

fig3 = figure;
set(fig3,...
 'Tag','fig3',...
 'NumberTitle','off',...
 'Name','Menu',...
 'Resize','off',...
 'BackingStore','off',...
 'MenuBar','none',...
 'ToolBar','none',...
 'Color',[0.85, 0.95, 0.85] +0.05,...
 'Units','normalized',...
 'OuterPosition',[0.45, 0.74, 0.15, 0.25]);
%--- (1) pb_Run --

N = 4; % There are N UIControl objects
X0 = 0.05;
Y0 = 0.05;
Ygap = 0.05;
DX = 1 -2*X0; % Width of a UIControl object
DY = (1-(N-1)*Ygap-2*Y0)/N; % Height of a UIControl object
my_fontsize = 12;
uicontrol(fig3,...
 'Style','pushbutton',...
 'Tag','pb_Run',...
 'Units','Normalized',...
 'Position',[X0, Y0+(N-1)*(DY+Ygap), DX, DY],...
 'FontSize',my_fontsize,...
 'String','Run',...
 'CallBack',@CB_pb_Run);
%--- (2) pb_ResetRobot ---

uicontrol(fig3,...
 'Style','pushbutton',...
 'Tag','pb_ResetRobot',...
 'Enable','on',...
 'Units','Normalized',...
 'Position',[X0, Y0+(N-2)*(DY+Ygap), DX, DY],...
 'FontSize',my_fontsize,...
 'String','Reset Robot',...
 'CallBack',@CB_pb_ResetRobot);
%--- (3) pop_SelectTrajectory ----------------------------------

uicontrol(fig3,...
 'Tag','pop_SelectTrajectory',...
 'Style','popupmenu',...
 'String',[...
 ' (1) Vertical line | ',...
 ' (2) Upper disk | ',...
 ' (3) Lower disk | ',...
 ' (4) Upper and lower circles | ',...
 ' (5) Cylinder | ',...
 ' (6) Sphere | ',...
 ' (7) Trapezoidal velocity trajectory'],...
 'Value',trajectory,...
 'Units','Normalized',...
 'Position',[X0, Y0+(N-3)*(DY+Ygap), DX, DY],...

155

 'FontSize',my_fontsize,...
 'CallBack',@CB_pop_SelectTrajectory);
%--- (4) pb_End --

uicontrol(fig3,...
 'Tag','pb_End',...
 'Style','pushbutton',...
 'Units','Normalized',...
 'Position',[X0, Y0, DX, DY],...
 'FontSize',my_fontsize,...
 'String','End',...
 'CallBack',@CB_pb_End);
drawnow
end

%% === function: SetTrajectory
==
function [Pref, m_loops]=SetTrajectory(trajectory)
global Xref Yref Zref path_color
global Zinit
set(findobj('Tag','ax_theta1'), 'XLim',[0,inf]);
set(findobj('Tag','ax_theta2'), 'XLim',[0,inf]);
set(findobj('Tag','ax_theta3'), 'XLim',[0,inf]);
set(findobj('Tag','ax_x'), 'XLim',[0,inf]);
set(findobj('Tag','ax_y'), 'XLim',[0,inf]);
set(findobj('Tag','ax_z'), 'XLim',[0,inf]);
set(findobj('Tag','Line_Theta1'), 'color',path_color)
set(findobj('Tag','Line_Theta2'), 'color',path_color)
set(findobj('Tag','Line_Theta3'), 'color',path_color)
set(findobj('Tag','Line_X'), 'color', path_color)
set(findobj('Tag','Line_Y'), 'color', path_color)
set(findobj('Tag','Line_Z'), 'color', path_color)
%---

% The default initial position of the end-effector is
% [Zinit, Yinit, Zinit] = [0, 0, -sqrt(Lb^2 -(La+Lr-Lh)^2
].
%---

switch trajectory
 case 1 % Vertical line
 z1 = 100;
 z2 = -150;

 n1 = 15;
 X1 = zeros(n1, 1);
 Y1 = zeros(n1, 1);
 Z1 = linspace(0, z1, n1)';

 n2 = 42;
 X2 = zeros(n2, 1);
 Y2 = zeros(n2, 1);
 Z2 = linspace(z1, z2, n2)';

 n3 = 27;
 X3 = zeros(n3, 1);

156

 Y3 = zeros(n3, 1);
 Z3 = linspace(z2, 0, n3)';

 X = [X1; X2(2:end); X3(2:end)];
 Y = [Y1; Y2(2:end); Y3(2:end)];
 Z = [Z1; Z2(2:end); Z3(2:end)];

 case 2 % Upper disk
 z = 100; % Z coordinate of the upper disc
 R = 200; % Radius of the upper disc
 ds = 20;
 dr = 20;

 n1 = ceil(abs(z/ds));
 X1 = zeros(n1,1);
 Y1 = zeros(n1,1);
 Z1 = linspace(0, z, n1)';

 Xr = 0;
 Yr = 0;
 for r=(R-floor(R/dr)*dr+dr):dr:R
 C = 2*pi*r;
 n = ceil(C/ds);
 TH = linspace(0, 360, n)';
 Xr = [Xr; r*cosd(TH)];
 Yr = [Yr; r*sind(TH)];
 end
 Zr = zeros(size(Xr)) +Z1(end);

 n2 = ceil((sqrt(R^2+z^2))/ds);
 X2 = linspace(R, 0, n2)';
 Y2 = zeros(n2,1);
 Z2 = linspace(z, 0, n2)';

 X = [X1; Xr(2:end); X2(2:end)];
 Y = [Y1; Yr(2:end); Y2(2:end)];
 Z = [Z1; Zr(2:end); Z2(2:end)];

 case 3 % Lower disk
 z = -150; % Z coordinate of the lower disc
 R = 200; % Radius of the lower disc
 ds = 20;
 dr = 20;

 n1 = ceil(abs(z/ds));
 X1 = zeros(n1,1);
 Y1 = zeros(n1,1);
 Z1 = linspace(0, z, n1)';

 Xr = 0;
 Yr = 0;
 for r=(R-floor(R/dr)*dr+dr):dr:R
 C = 2*pi*r;
 n = ceil(C/ds);
 TH = linspace(0, 360, n)';
 Xr = [Xr; r*cosd(TH)];

157

 Yr = [Yr; r*sind(TH)];
 end
 Zr = zeros(size(Xr)) +Z1(end);

 n2 = ceil((sqrt(R^2+z^2))/ds);
 X2 = linspace(R, 0, n2)';
 Y2 = zeros(n2,1);
 Z2 = linspace(z, 0, n2)';

 X = [X1; Xr(2:end); X2(2:end)];
 Y = [Y1; Yr(2:end); Y2(2:end)];
 Z = [Z1; Zr(2:end); Z2(2:end)];

 case 4 % Upper and lower circles
 R = 250; % Radius of the circles
 z1 = 100; % Z coordinate of the upper circle
 z2 = -150; % Z coordinate of the lower circle
 % Elevation1 = atan2d(z1, R)
 % Elevation2 = atan2d(z2, R)

 n = 60;
 Azimuth = linspace(0,360,n)';
 XR = R*cosd(Azimuth);
 YR = R*sind(Azimuth);

 n1 = 15;
 X1 = linspace(0, R, n1)';
 Y1 = zeros(n1,1);
 Z1 = linspace(0, z1, n1)';

 X2 = XR;
 Y2 = YR;
 Z2 = zeros(n,1) +z1;

 n2 = 20;
 X3 = R*ones(n2,1);
 Y3 = zeros(n2,1);
 Z3 = linspace(z1, z2, n2)';

 X4 = XR;
 Y4 = YR;
 Z4 = zeros(n,1) +z2;

 n3 = 20;
 X5 = linspace(R, 0, n3)';
 Y5 = zeros(n3,1);
 Z5 = linspace(z2, 0, n3)';

 X = [X1; X2(2:end); X3(2:end); X4(2:end); X5(2:end)];
 Y = [Y1; Y2(2:end); Y3(2:end); Y4(2:end); Y5(2:end)];
 Z = [Z1; Z2(2:end); Z3(2:end); Z4(2:end); Z5(2:end)];

 case 5 % Cylinder
 R = 260; % Radius of the cylinder
 z1 = -200; % z coordinate of the lower circle
 z2 = 150; % z coordinate of the upper circle

158

 n = 60;
 Azimuth = linspace(0,360,n)';
 XR0 = R*cosd(Azimuth);
 YR0 = R*sind(Azimuth);
 ZR0 = zeros(size(XR0));

 n1 = 30;
 X1 = linspace(0, R, n1)';
 Y1 = zeros(n1,1);
 Z1 = linspace(0, z1, n1)';

 nr = 20;
 Zh = linspace(z1, z2, nr);
 XR = XR0;
 YR = YR0;
 ZR = ZR0 +Zh(1);
 for i=2:nr
 XR = [XR; XR0];
 YR = [YR; YR0];
 ZR = [ZR; ZR0+Zh(i)];
 end

 n2 = 15;
 X2 = linspace(R, 0, n2)';
 Y2 = zeros(n2,1);
 Z2 = linspace(z2, 0, n2)';

 X = [X1; XR; X2];
 Y = [Y1; YR; Y2];
 Z = [Z1; ZR; Z2];

 case 6 % Sphere
 R = 130; % Radius of the sphere

 n1 = 21;
 X1 = zeros(n1,1);
 Y1 = zeros(n1,1);
 Z1 = linspace(0, -2*R, n1)';
 X2 = zeros(n1,1);
 Y2 = zeros(n1,1);
 Z2 = flip(Z1);

 n = 30;
 TH = linspace(0, 360, n)';
 XR = cosd(TH);
 YR = sind(TH);
 Xr = 0;
 Yr = 0;
 Zr = 0;
 for i=2:(n1-1)
 Xr = [Xr; XR*sqrt(R^2 -(Z2(i)+R)^2)];
 Yr = [Yr; YR*sqrt(R^2 -(Z2(i)+R)^2)];
 Zr = [Zr; ones(n,1)*Z2(i)];
 end
 X = [X1; Xr(2:end); 0];
 Y = [Y1; Yr(2:end); 0];

159

 Z = [Z1; Zr(2:end); 0];

 case 7 % Trapezoidal velocity trajectory
 distance = 250; % max: 385
 m0_loops = 100;
 Ta = round(m0_loops*0.3); % t — j ?
 Vmax = distance/(m0_loops-Ta);
 acceleration = Vmax/Ta;
 deceleration = -acceleration;
 Vacc = 0:acceleration:Vmax;
 Vdec = Vmax:deceleration:0;
 Vconst = Vmax*ones(1, m0_loops -length(Vacc) -
length(Vdec));
 Vxyz = [Vacc, Vconst, Vdec];
 Sxyz = zeros(length(Vxyz), 1);
 dt = 1; % This value must be corrected to the actual
value
 % during the experiment. Others such as
acceleration,
 % velocity, displacement, etc. are also the
same.
 for i=2:m0_loops
 Sxyz(i) = Sxyz(i-1) +Vxyz(i-1)*dt;
 end
 Azimuth = 240; % 0 ~ 360
 Elevation = -45; % -45 ~ 20
 X = cosd(Elevation)*cosd(Azimuth)*Sxyz;
 Y = cosd(Elevation)*sind(Azimuth)*Sxyz;
 Z = sind(Elevation)*Sxyz;
end
Xref = X;
Yref = Y;
Zref = Z +Zinit;
m_loops = length(Xref);
Pref = [Xref, Yref, Zref];
end

%% === function:
CB_pb_Run===
function CB_pb_Run(src,event)
global k0
global ploting
global Line_P
global Line_Theta1 Line_Theta2 Line_Theta3
global Line_X Line_Y Line_Z
set(findobj('Tag','text_error'),'Visible','off')
if ploting==1
 ploting=0;
 set(findobj('Tag','pb_Run'),'String','Continue')
else
 ploting=1;
 set(findobj('Tag','pb_Run'),'String','Pause')
end
if k0==0
 clearpoints(Line_P)
 clearpoints(Line_Theta1)

160

 clearpoints(Line_Theta2)
 clearpoints(Line_Theta3)
 clearpoints(Line_X)
 clearpoints(Line_Y)
 clearpoints(Line_Z)
end
end

%% === function: CB_pb_ResetRobot
===
function CB_pb_ResetRobot(src,event)
global k0 ploting
global Line_P
global Line_Theta1 Line_Theta2 Line_Theta3
global Line_X Line_Y Line_Z
global LINK_A LINK_B LINK_Bs PLATE_C CONNECTER_PC
global BALLJOINT_B BALLJOINT_C
global V_LINK_A0 V_LINK_B0 V_LINK_Bs0 V_PLATE_C0 V_CONNECTER_PC0
global V_BALLJOINT_B0 V_BALLJOINT_C0
k0 = 0;
ploting = 0;
clearpoints(Line_P)
clearpoints(Line_Theta1)
clearpoints(Line_Theta2)
clearpoints(Line_Theta3)
clearpoints(Line_X)
clearpoints(Line_Y)
clearpoints(Line_Z)
set(findobj('Tag','text_error'),'Visible','off')
set(findobj('Tag','pb_Run'), 'string','Run','Enable','on')
for i=1:3
 %--- LINK_A --

 set(LINK_A(i), 'Vertices', V_LINK_A0{i});
 % --- CONNECTOR_PC ---

 set(CONNECTER_PC(i), 'Vertices', V_CONNECTER_PC0{i})
 %--- LINK_B (Parallel four-bar linkage) --------------------

 for j=1:2
 %--- LINK_B (Parallel four-bar linkage: long side) -----

 set(LINK_B(i,j), 'Vertices', V_LINK_B0{i,j})
 %--- LINK_Bs (Parallel four-bar linkage: short side) ---

 set(LINK_Bs(i,j), 'Vertices', V_LINK_Bs0{i,j})
 %--- BALLJOINT ---

 set(BALLJOINT_B(i,j), 'Vertices', V_BALLJOINT_B0{i,j})
 set(BALLJOINT_C(i,j), 'Vertices', V_BALLJOINT_C0{i,j})
 %---

 end % END: for j=1:2
end % END: for i=1:3
%--- PLATE_C (Bottom tool mounting plate) ----------------------

161

set(PLATE_C, 'Vertices', V_PLATE_C0)
drawnow
end % END function CB_ResetRobot(src,event)

%% === function: CB_pop_SelectTrajectory
==================================
function CB_pop_SelectTrajectory(src,event)
global trajectory Pref m_loops k0
trajectory = get(src,'Value');
[Pref, m_loops] = SetTrajectory(trajectory);
k0 = 0;
end

%% === function: CB_pb_End
==
function CB_pb_End(src,event)
global end_program
end_program = 1;
end

%% === function: CREAT_CUBOID
===
function patch_obj=CREAT_CUBOID(Oxyz,Lx,Ly,Lz,...
 FaceColor,visible,EdgeColor)
% Oxyz GThe coordinates of the lower left point on the bottom of
this cuboid
% Lx: The length of the side parallel to the x-axis
% Ly: The length of the side parallel to the y-axis
% Lz: The length of the side parallel to the z-axis
% FaceColor GThe color of the surface of this 3D draphical
object
% visible G'on' X Display the object;
% 'off' X Hide the object without deleting it.
% EdgeColor GSee 'UIControl Properties'
if nargin<7 % Set the EdgeColor default value to be the same as
the cylindrical surface
 EdgeColor = 'none';
 if nargin<6 % Set the object visible by default
 visible = 'on';
 if nargin<5 % Set the default color of the object to
white
 FaceColor = ones(1,3); % (The 3D graphics look gray
due to shadows)
 end
 end
end
x0 = Oxyz(1);
y0 = Oxyz(2);
z0 = Oxyz(3);
X = [0, 0,Lx,Lx, 0, 0,Lx,Lx]'+x0;
Y = [0,Ly,Ly, 0, 0,Ly,Ly,0]'+y0;
Z = [0, 0, 0, 0,Lz,Lz,Lz,Lz]'+z0;
F = [...
 1 2 3 4;
 5 1 4 8;

162

 5 6 2 1;
 2 6 7 3;
 4 3 7 8;
 5 6 7 8];
patch_obj = patch('Faces',F,'Vertices',[X,Y,Z],...

'FaceColor',FaceColor,'EdgeColor',EdgeColor,'Visible',visible);
end

%% === function: CREAT_CYLINDER
===
function patch_obj=CREAT_CYLINDER(Oxyz,radius,height,...
 N_sides,FaceColor,visible,EdgeColor)
if nargin<7
 EdgeColor = 'none';
 if nargin<6
 visible = 'on';
 if nargin<5
 FaceColor = ones(1,3);
 if nargin<4
 N_sides = 32;
 end
 end
 end
end
Nh = length(height);
N = Nh +1;
x0 = Oxyz(1);
y0 = Oxyz(2);
z0 = Oxyz(3);
dth = 2*pi/N_sides;
THETA = (0:dth:(N_sides-1)*dth)';
Nxm = N*N_sides;
X = zeros(Nxm,1);
Y = zeros(Nxm,1);
Z = zeros(Nxm,1);
F = zeros(Nxm-N_sides,4);
X(1:N_sides) = radius(1)*cos(THETA) +x0;
Y(1:N_sides) = radius(1)*sin(THETA) +y0;
Z(1:N_sides) = z0*ones(N_sides,1);
for i=2:N
 ixm = i*N_sides;
 X(ixm-N_sides+1:ixm) = radius(i)*cos(THETA)+x0;
 Y(ixm-N_sides+1:ixm) = radius(i)*sin(THETA)+y0;
 Z(ixm-N_sides+1:ixm) = (z0 +sum(height(1:i-1))
)*ones(N_sides,1);
 F(ixm-N_sides-N_sides+1:ixm-N_sides,:) = [(1:N_sides-1)',
(2:N_sides)', (N_sides+2:N_sides+N_sides)',
(N_sides+1:N_sides+N_sides-1)';...
 N_sides, 1, N_sides+1, N_sides+N_sides] +ixm-N_sides-
N_sides;
end
patch_obj = patch('Faces',F,'Vertices',[X,Y,Z],...

'FaceColor',FaceColor,'EdgeColor',EdgeColor,'Visible',visible);
end

163

%% === function: CREAT_M_PLATE
==
function patch_obj=CREAT_M_PLATE(Oxyz,X,Y,height,...
 FaceColor,visible,EdgeColor)
if nargin<7
 EdgeColor = 'none';
 if nargin<6
 visible = 'on';
 if nargin<5
 FaceColor = ones(1,3);
 end
 end
end
[row,column] = size(X);
if row==1
 X = X';
end
[row,column] = size(Y);
if row==1
 Y = Y';
end
[row,column] = size(height);
Nh = length(height);
N = Nh +1;
N_sides = length(X)/N;
x0 = Oxyz(1);
y0 = Oxyz(2);
z0 = Oxyz(3);
X = X +x0;
Y = Y +y0;
Z = zeros(size(X));
Z(1:N_sides) = z0*ones(N_sides,1);
for i=2:N
 ixm = i*N_sides;
 Z(ixm-N_sides+1:ixm) = (z0+sum(height(1:i-
1)))*ones(N_sides,1);
 F(ixm-N_sides-N_sides+1:ixm-N_sides,:) = [(1:N_sides-1)',
(2:N_sides)', (N_sides+2:N_sides+N_sides)',
(N_sides+1:N_sides+N_sides-1)';...
 N_sides, 1, N_sides+1, N_sides+N_sides] +(i-2)*N_sides;
end
patch_obj = patch('Faces',F,'Vertices',[X,Y,Z],...

'FaceColor',FaceColor,'EdgeColor',EdgeColor,'Visible',visible);

164

APPENDIX B
LabVIEW NI Vision Program for Target Object Colour Detection and interface

with Arduino microcontroller Board

165

166

APPENDIX C
Arduino IDE C++ Program for Robotic Kinematic Feedback Signal Detection

167

//Parallel Robot Rotation Detection

#define outputA1 2
#define outputA2 3

#define outputB1 5
#define outputB2 6

#define outputC1 8
#define outputC2 9

int counter1 = 0;
int counter2 = 0;
int counter3 = 0;

int aState1;
int aLastState1;
int aState2;
int aLastState2;
int aState3;
int aLastState3;

void setup() {
pinMode (outputA1,INPUT);
pinMode (outputA2,INPUT);
pinMode (outputB1,INPUT);
pinMode (outputB2,INPUT);
pinMode (outputC1,INPUT);
pinMode (outputC2,INPUT);

Serial.begin (9600);
Serial.print (counter1*9);
Serial.print ("\t");
Serial.print (counter2*9);
Serial.print ("\t");
Serial.println (counter3*9);

aLastState1 = digitalRead(outputA1);
aLastState2 = digitalRead(outputB1);
aLastState3 = digitalRead(outputC1);
}

168

void loop() {
aState1 = digitalRead(outputA1);
aState2 = digitalRead(outputB1);
aState3 = digitalRead(outputC1);

if (aState1 != aLastState1){
if (digitalRead(outputA2)!= aState1)
{
counter1 --;
}else{
counter1 ++;
}
Serial.print (counter1*9);
Serial.print ("\t");
Serial.print (counter2*9);
Serial.print ("\t");
Serial.println (counter3*9);
}
aLastState1 =aState1;

if (aState2 != aLastState2){
if (digitalRead(outputB2)!= aState2)
{
counter2 --;
}else{
counter2 ++;
}
Serial.print (counter1*9);
Serial.print ("\t");
Serial.print (counter2*9);
Serial.print ("\t");
Serial.println (counter3*9);
}
aLastState2 =aState2;

if (aState3 != aLastState3){
if (digitalRead(outputC2)!= aState3)
{
counter3 --;
}else{
counter3 ++;
}
Serial.print (counter1*9);

169

Serial.print ("\t");
Serial.print (counter2*9);
Serial.print ("\t");
Serial.println (counter3*9);
}
aLastState3 =aState3;
}

170

Biography

Name - Surname Surin Subson

Date of Birth December 31, 1976

Address 263/160, Tambon Lumpakkud, Amphoe Tunyaburi,

 Pathumthani, 12110,

Education Bachelor of Business Administration (Management), (2005-2008)

Experiences Work Project Manager

 Maxens Co.,Ltd. (2010-2022).

Telephone Number +668-1558-5941

Email Address surin_s@mail.rmutt.ac.th

171

Surin Subson, Dechrit Maneetham, Myo Min Aung: Kinematics Simulation and
Experiment for Optimum Design of a New Prototype Parallel Robot.
International Journal of Engineering Trends and Technology, Volume 70 Issue
10, 350-362, October 2022 https://doi.org/10.14445/22315381/IJETT-
V70I10P234

 Surin Subson, Dechrit Maneetham, Myo Min Aung: Real-time Vision image processing

based on LabVIEW and Microcontroller controlled Parallel Robot, 2022 IEEE
8th Information Technology International Seminar (ITIS)
https://ieeexplore.ieee.org/document/10009950

	Cover
	Title
	Approve
	Abstract
	Acknowledgements
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Biography

