การบำบัดน้ำชะมูลฝอยจากหลุมฝั่งกลบเก่าด้วยกระบวนการโฟโตคะตะลิติก โดยใช้ไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา

TREATMENT OF MATURE LANDFILL LEACHATE BY USING TiO₂ PHOTOCATALYST

ปรียานุช พัฒนการค้า

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ปีการศึกษา 2558 ลิขสิทธิ์ของมหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี

การบำบัดน้ำชะมูลฝอยจากหลุมฝั่งกลบเก่าด้วยกระบวนการโฟโตคะตะลิติก โดยใช้ไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา

หัวข้อวิทยานิพนธ์	การบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่าด้วยกระบวนการ			
	โฟโตคะตะลิติกโดยใช้ไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา			
	Treatment of Mature Landfill Leachate by Using TiO_2 Photocatalyst			
ชื่อ - นามสกุล	นางสาวปรียานุช พัฒนการค้า			
สาขาวิชา	-วิศวกรรมโยธา			
อาจารย์ที่ปรึกษา	ผู้ช่วยศาสตราจารย์ธรรมศักดิ์ โรจน์วิรุฬห์, วศ.ค.			
ปีการศึกษา	2558			

คณะกรรมการสอบวิทยานิพนธ์

ประธานกรรมการ

(อาจารย์ฐนียา รั่งษีสุริยะชัย, วศ.ค.)

กรรมการ

(รองศาสตราจารย์สัญญา สิริวิทยาปกรณ์, Ph.D.)

กรรมการ

(ผู้ช่วยศาสตราจารย์ปิติศานต์ กร้ำมาตร, ปร.ด.)

Oms R_S กรรมการ

(ผู้ช่วยศาสตราจารย์ธรรมศักดิ์ โรจน์วิรุฬห์, วศ.ค.)

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทค โน โลยีราชมงคลธัญบุรี อนุมัติวิทยานิพนธ์ฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

_______________________คณบดีคณะวิศวกรรมศาสตร์

(ผู้ช่วยศาสตราจารย์ศิวกร อ่างทอง, Ph.D.) วันที่ 12 เดือน กรกฎาคม พ.ศ. 2559 หัวข้อวิทยานิพนธ์

ชื่อ -นามสกุล สาขาวิชา อาจารย์ที่ปรึกษา ปีการศึกษา การบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่าด้วยกระบวนการ โฟโตคะตะลิติกโดยใช้ไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา นางสาวปรียานุช พัฒนการค้า วิศวกรรมโยธา ผู้ช่วยศาสตราจารย์ธรรมศักดิ์ โรจน์วิรุฬห์, วศ.ค. 2558

บทคัดย่อ

งานวิจัยนี้มุ่งเน้นการศึกษาประสิทธิภาพการบำบัดในน้ำชะมูลฝอยจากหลุมฝังกลบเก่าด้วย กระบวนการ โฟโตคะตะลิก ซึ่งลักษณะสมบัติของน้ำชะมูลฝอยดังกล่าวมืองค์ประกอบที่ยากต่อการย่อย สลายด้วยกระบวนการทางชีวภาพโดยมีก่า BOD,/COD ก่อนข้างต่ำอยู่ระหว่าง 0.10-0.15

โดยการศึกษาจะทำการเปรียบเทียบประสิทธิภาพการบำบัด COD, BOD, และ VFA ในน้ำชะ มูลฝอยด้วยกระบวนการโฟโตคะตะลิติกร่วมกับตัวเร่งปฏิกิริยา TiO₂ แบบฟิล์มบาง ที่เตรียมด้วยวิธีโซล เจลเคลือบลงบน Petri dish 3, 4 และ 5 ชั้น ตามลำดับ โดยทำการวิเคราะห์ลักษณะทางกายภาพของตัวเร่ง ปฏิกิริยาที่เตรียมขึ้นด้วยอุปกรณ์ต่างๆ ได้แก่ XRD, AFM และ UV-Vis Spectrometer ตามลำดับ

จากผลการศึกษา พบว่า ด้วเร่งปฏิกิริยาที่เครียมขึ้นมีคุณสมบัติเหมาะสมสำหรับ กระบวนการโฟโตกะตะลิติก โดยมีโกรงสร้างผลึกเป็นอนาเทส ขนาดช่องว่างพลังงานต่ำ และมีขนาด อนุภากในระดับนาโนเมตรอยู่ระหว่าง 25-200 nm สำหรับประสิทธิภาพการกำจัด COD ในน้ำชะมูลฝอย พบว่า สามารถกำจัด COD ใด้มีประสิทธิภาพสูงสุด เท่ากับ 25.00, 41.50 และ 52.65% โดยใช้ด้วเร่ง ปฏิกิริยาที่มีจำนวนชั้นการเกลือบ 3, 4 และ 5 ชั้น ตามลำดับ ทั้งนี้กระบวนการดังกล่าวสามารถเพิ่มค่า BOD₂/COD ในน้ำชะมูลฝอยได้ คิดเป็น 69.64, 54.11, 49.82 และ 33.38% ที่ค่า BOD₂/COD เริ่มต้นเท่ากับ 50:320, 80:640, 110:720 และ 140:960 ตามลำดับ นอกจากนี้เมื่อพิจารณาการเปลี่ยนแปลงความเข้มข้น VFA หลังผ่านการบำบัด 180 นาที สามารถลด VFA ในช่วง 6.3 ถึง 10.00% สำหรับการศึกษา จลนพลสาสตร์ของกระบวนการดังกล่าวสามารถอธิบายได้โดยสมการ Langmuir Hinshelwood และ สามารถหาก่าคงที่ของปฏิกิริยาฉพาะโดยมีก่าเท่ากับ 6.67×10^{*}, 2.00×10⁻⁷ และ 5.83×10⁻⁷ min⁻¹.µW⁻¹ เมื่อ ใช้ตัวเร่งปฏิกิริยาที่มีจำนวนชั้นการเคลือบ 3, 4 และ 5 ชั้น ตามลำดับ

<mark>คำสำคัญ</mark>: กระบวนการออกซิเดชันขั้นสูง โซลเจล แสงอัลตราไวโอเลต หลุมฝังกลบ

Thesis Title	Treatment of Mature Landfill Leachate by Using TiO_2 Photocatalyst			
Name - Surname	Miss. Preeyanuch Phatthanakarnkha			
Program	Civil Engineering			
Thesis Advisor	Assistant Professor Thammasak Rojviroon, D.Eng.			
Academic Year	2015			

ABSTRACT

This study investigated the performance of photocatalytic process in the treatment of mature landfill leachate. The characteristics of leachate from mature landfill comprised of non-biodegradable organic substances and less biodegradable carbon with low BOD₅/COD ratio of. 0.1-0.15.

This study compared the COD, BOD_5 and VFA removal efficiencies of titanium dioxide (TiO_2) thin films photocatalyst coated on the surfaces of petri dish that prepared by sol-gel dip coating method with 3, 4 and 5 coating layers. The physical properties of TiO_2 photocatalyst were evaluated by AFM, UV-Vis Spectrometer and XRD.

The analysis results indicated that the crystalline structure of TiO₂ on the coated surface was anatase phase with the band gap energy of 3.26 eV and the particle diameters were ranging from 25-200 nm. For the photocatalytic activity test, the COD removal efficiencies at 180 minutes were 25.00%, 41.50% and 52.65%, for 3, 4 and 5 layers coating, respectively. The results showed the photocatalytic process of TiO₂ thin films were able to increase the BOD₅/COD ratio by 69.64%, 54.11%, 49.82% and 33.38% for the respective initial BOD₅/COD ratios of 50: 320, 80: 640, 110: 720 and 140: 960. Moreover, this process could reduce the VFA concentrations with the efficiencies of 6.3 to 10.00% at 180 min. The kinetics of photocatalytic process with TiO₂ photocatalytic process for COD removal were 6.67×10^{-8} , 2.00×10^{-7} and 5.83×10^{-7} min⁻¹. μ W⁻¹, for 3, 4 and 5 layers coating, respectively.

Keywords: Advanced oxidation processes, Sol-gel Dip-coating, UVA, Landfill leachate

กิตติกรรมประกาศ

การศึกษางานวิจัยฉบับนี้สำเร็จลุล่วงอย่างสมบูรณ์ได้ด้วยความกรุณา และความอนุเคราะห์ ของผู้ช่วยศาสตราจารย์ ดร.ธรรมศักดิ์ โรจน์วิรุฬห์ อาจารย์ที่ปรึกษา และผู้ช่วยศาสตราจารย์ อรวรรณ โรจน์วิรุฬห์ ที่ได้กรุณาเสียสละเวลาให้คำปรึกษา คำแนะนำ และให้ข้อเสนอแนะในการปรับปรุง แก้ไขข้อบกพร่องต่างๆ จนสำเร็จลุล่วงไปได้ด้วยดี ผู้ทำการศึกษาวิจัยขอกราบขอบพระคุณอย่างสูงมา ณ ที่นี้

ขอขอบพระคุณ อาจารย์ คร.ฐนียา รังษีสุริยะชัย ประธานกรรมการสอบ รวมถึงกรรมการ สอบผู้ช่วยศาสตราจารย์ คร.ปิติศานต์ กร้ำมาตร และรองศาสตราจารย์ คร. สัญญา สิริวิทยาปกรณ์ ที่ ได้ให้กวามกรุณาในการแก้ไขข้อบกพร่องต่าง ๆ ของงานวิจัย รวมทั้งเสียสละเวลาในการเป็น กรรมการสอบในครั้งนี้

ขอขอบพระกุณ และมอบกวามดีทั้งหมดนี้ให้แก่ นายสุดัน กากี (กุณพ่อ) นางน้ำฝน พัฒน การก้า (กุณแม่) ญาติพี่น้อง และนางสาวชลธิดา จ้อยกระจ่าง ที่ก่อยช่วยเหลือและเป็นกำลังใจในการ ทำงานวิจัยนี้ ร่วมถึงกณาจารย์ทุกท่านที่ให้การสนับสนุนและประสิทธิ์ประสาทวิชากวามรู้ให้แก่ ข้าพเจ้า และขอบกุณภากวิชาวิศวกรรมโยธา กณะวิศวกรรมศาสตร์ มหาวิทยาลัยราชมงกลธัญบุรีที่ให้ ใช้สถานที่ห้องปฏิบัติการสำหรับปฏิบัติงานวิจัยนี้ให้สำเร็จลุล่วงไปด้วยดี

สุดท้ายนี้ ผู้วิจัยหวังเป็นอย่างยิ่งว่างานวิจัยเล่มนี้จะเป็นประโยชน์สำหรับผู้ที่สนใจ หาก งานวิจัยในครั้งนี้ขาดตกบกพร่อง หรือไม่สมบูรณ์ประการใค ผู้วิจัยกราบขออภัยมา ณ โอกาสนี้ด้วย

ปรียานุช พัฒนการค้า

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	(3)
บทคัดย่อภาษาอังกฤษ	(4)
กิตติกรรมประกาศ	(5)
สารบัญ	(6)
สารบัญตาราง	(9)
สารบัญรูป	(12)
คำอธิบายสัญลักษณ์และคำย่อ	(14)
บทที่ 1 บทนำ	15
1.1 ความเป็นมาและความสำคัญของปัญหา	15
1.2 วัตถุประสงค์การวิจัย	16
1.3 ขอบเขตของการวิจัย	16
1.4 ประโยชน์ที่คาคว่าจะได้รับ	16
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	18
2.1 น้ำชะมูลฝอย	18
2.1.1 การย่อยสลายของน้ำชะมูลฝอยในหลุมฝังกลบ	19
2.1.2 ลักษณะของน้ำชะมูลฝอย	21
2.1.3 การบำบัคน้ำชะมูลฝอย	23
2.2 กระบวนการโฟโตคะตะลิติก	27
2.2.1 กระบวนการดูดซับ (Adsorption process)	27
2.2.2 การฉายแสง (Irradiation process)	28
2.2.3 ตัวเร่งปฏิกิริยาในกระบวนการ โฟโตกะตะลิติก	29
2.2.4 กลไกการเกิดปฏิกิริยาในกระบวนการโฟโตคะตะลิติก	30
2.2.5 งถนพถศาสตร์ของโฟโตกะตะถิติก (Kinetics of photocatalysis)	33
2.3 ทฤษฎีโซล-เจล (Sol-gel)	37
2.3.1 การเคลือบผิวด้วยวิธีโซล-เจล	38

สารบัญ (ต่อ)

	หน้า
2.4 การทคสอบลักษณะทางกายภาพของตัวเร่งปฏิกิริยา TiO ₂	40
2.4.1 X-Ray Diffraction (XRD)	40
2.4.2 Atomic Force Microscopy (AFM)	40
2.4.3 UV-Vis Spectroscopy	42
2.5 งานวิจัยที่เกี่ยวข้อง	43
บทที่ 3 วิธีดำเนินการวิจัย	46
3.1 เครื่องมือและอุปกรณ์	46
3.1.1 ถังปฏิกรณ์สำหรับกระบวนการโฟโตคะตะลิติก	46
3.1.2 อุปกรณ์ชุบเคลือบผิวตัวเร่งปฏิกิริยา	46
3.1.3 สารเคมีที่ใช้ในการศึกษา	47
3.1.4 เครื่องมือและอุปกรณ์สำหรับงานวิเคราะห์ในห้องปฏิบัติการ	47
3.2 ขั้นตอนการคำเนินงาน	48
3.3 ศึกษาลักษณะสมบัติของน้ำชะมูลฝอยจากหลุมฝังกลบเก่า	49
3.4 การเตรียมตัวเร่งปฏิกิริยา TiO ₂	49
3.5 การวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา	50
3.6 ศึกษาประสิทธิภาพในการกำจัด COD และติดตาม BOD₅, VFA ในน้ำชะมูลฝอย	
จากหลุมฝังกลบเก่า โดยกระบวนการ โฟโตคะตะลิติก	52
3.6.1 ศึกษาประสิทธิภาพการกำจัค COD	52
3.6.2 ติดตามการเปลี่ยนแปลง BOD ₅ และ VFA	53
3.7 การศึกษาค่างลนพลศาสตร์ของกระบวนการ โฟโตคะตะลิติกในการบำบัด	
น้ำชะมูลฝอยจากหลุมฝั่งกลบเก่า	57
3.8 สถานที่ทำการศึกษา	57
บทที่ 4 ผลการคำเนินงานและการวิเคราะห์ข้อมูล	58
4.1 ลักษณะสมบัติของน้ำชะมูลฝอยจากหลุมฝังกลบเก่า	58
4.2 ลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทเนียมไคออกไซด์	59
4.2.1 การวิเกราะห์ X-ray Diffraction (XRD)	59

สารบัญ (ต่อ)

ា	หน้า
4.2.2 การวิเคราะห์ Atomic Force Microscopy (AFM)	60
4.2.3 การวิเคราะห์ด้วย UV-Vis Spectroscopy	60
4.3 การศึกษาประสิทธิภาพการบำบัดน้ำชะมูลฝอยด้วยตัวเร่งปฏิกิริยา TiO ₂	62
4.3.1 ประสิทธิภาพการบำบัด COD	62
4.3.2 การติดตามการเปลี่ยนแปลง BOD₅	65
4.3.3 การติดตามการเปลี่ยนแปลง VFA	67
4.3.4 อัตราส่วนระหว่าง BOD, กับ COD	68
4.4 จถนพลศาสตร์ของปฏิกิริยาโฟโตคะตะลิติก	70
บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ	74
5.1 สรุปผลการวิจัย	74
5.2 ข้อเสนอแนะ	76
บรรณานุกรม	77
ภาคผนวก	85
ภาคผนวก ก การกำจัด COD ด้วยกระบวนการ โฟโตคะตะลิติกร่วมกับตัวเร่ง TiO ₂	86
ภาคผนวก ข การติดตามการเปลี่ยนแปลงความเข้มข้น BOD และ VFA ด้วยกระบวนกา	ว
โฟโตคะตะถิติกร่วมกับตัวเร่งปฏิกิริยา TiO ₂	93
ภาคผนวก ค อุปกรณ์สำหรับการวิเคราะห์งานวิจัย	98
ภาคผนวก ง ผลงานวิจัยที่ตีพิมพ์เผยแพร่	101
ประวัติผู้เขียน	113
68905-55082	

สารบัญตาราง

			หน้า
ตารางที่	2.1	ลักษณะของชะมูลฝอยตามอายุของหลุมฝังกลบ	22
ตารางที่	2.2	สรุปกระบวนการบำบัดน้ำชะมูลฝอยต่างๆ	25
ตารางที่	2.3	การบำบัดน้ำชะมูลฝอยโดยวิธีการต่างสำหรับสถานที่ฝังกลบใหม่และเก่า	26
ตารางที่	2.4	การเปรียบเทียบลักษณะสมบัติของไทเทเนียมไดออกไซด์ ระหว่างรูไทล์, อนาเทส	
		และบรูคไคท์	30
ตารางที่	2.5	ศักย์ออกซิเคชัน (Oxidation Potential) ของตัวออกซิไคซ์ชนิคต่างๆ	33
ตารางที่	2.6	สารปนเปื้อนหลังจากการบำบัดด้วยกระบวนการโฟโตคะตะลิติกของน้ำชะมูลฝอย.	36
ตารางที่	2.7	ข้อดีและข้อเสียของการเคลือบด้วยเทคนิคโซล-เจล	39
ตารางที่	3.1	พารามิเตอร์และวิธีการวิเคราะห์ลักษณะสมบัติของน้ำชะมูลฝอย	49
ตารางที่	3.2	อุณหภูมิในการเคลือบตัวเร่งปฏิกิริยา TiO ₂ บนผิวตัวกลาง	50
ตารางที่	3.3	วิเคราะห์ลักษณะทางกายภาพตัวเร่งปฏิกิริยา TiO2	51
ตารางที่	3.4	ชุดทดลองสำหรับการศึกษาในการบำบัดน้ำชะมูลฝอยด้วยกระบวนการ	
		โฟโตคะตะลิติกร่วมกับตัวเร่งปฏิกิริยา TiO ₂	52
ตารางที่	4.1	ลักษณะและคุณภาพของน้ำชะมูลฝอยเบื้องต้นก่อนการบำบัด	58
ตารางที่	4.2	คุณสมบัติของ TiO ₂ ชนิดฟิล์มบาง	61
ตารางที่	4.3	ประสิทธิภาพการบำบัดน้ำชะมูลฝอยโดยใช้ TiO ₂	63
ตารางที่	4.4	การเปลี่ยนแปลง $\mathrm{BOD}_{\mathrm{s}}$ หลังผ่านกระบวนการบำบัดด้วยกระบวนการ	
		โฟโตกะตะลิติก	66
ตารางที่	4.5	การเปลี่ยนแปลง VFA หลังผ่านกระบวนการบำบัดด้วยกระบวนการ	
		โฟโตกะตะถิติก	67
ตารางที่	4.6	อัตราส่วนระหว่าง BOD5:COD	68
ตารางที่	4.7	ค่าคงที่ของการเกิดปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอย	72
ตารางที่	4.8	เปรียบเทียบค่าคงที่ปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอย	
		กับงานวิจัยอื่น	73
ตารางที่	ก.1	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 3 ชั้น	
		ที่กวามเข้มข้นเริ่มต้น 320 mg/L	87

สารบัญตาราง (ต่อ)

			หน้า
ตารางที่	ก.2	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 3 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 640 mg/L	87
ตารางที่	ก.3	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 3 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 720 mg/L	88
ตารางที่	ก.4	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 3 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 960 mg/L	88
ตารางที่	ก.5	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 4 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 320 mg/L	89
ตารางที่	ก.6	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 4 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 640 mg/L	89
ตารางที่	ก.7	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 4 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 720 mg/L	90
ตารางที่	ก.8	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 4 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 960 mg/L	90
ตารางที่	ก.9	การกำจัด COD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน Petri Dish จำนวน 5 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 320 mg/L	91
ตารางที่	ก.1	o การกำจัด COD ของน้ำชะขยะด้วย TiO $_2$ เคลือบบน Petri Dish จำนวน 5 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 640 mg/L	91
ตารางที่	ก.1	าการกำจัด COD ของน้ำชะขยะด้วย TiO $_2$ เคลือบบน Petri Dish จำนวน 5 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 720 mg/L	92
ตารางที่	ก.1	2 การกำจัด COD ของน้ำชะขยะด้วย TiO $_2$ เคลือบบน Petri Dish จำนวน 5 ชั้น	
		ที่ความเข้มข้นเริ่มต้น 960 mg/L	92
ตารางที่	V. 1	การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO $_2$ เกลือบบน	ĺ
		Petri Dish จำนวนชั้น 5 ชั้นที่กวามเข้มข้นเริ่มต้น 50 mg/L	94
ตารางที่	ข.2	การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO ₂ เคลือบบน	ĺ
		Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 80 mg/L	94

สารบัญตาราง (ต่อ)

ตารางที่	ข.3	การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO₂ เกลือบบน	
		Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 110 mg/L	95
ตารางที่	ข.4	การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO₂เกลือบบน	
		Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 140 mg/L	95
ตารางที่	ข.5	การติดตามการเปลี่ยนแปลงความเข้มข้น VFA ของน้ำชะขยะด้วย TiO ₂ เคลือบบน	
		Petri Dish จำนวนชั้น 5 ชั้น	96

สารบัญรูป

			หน้า
รูปที่	2.1	การเกิดน้ำชะมูลฝอย	18
รูปที่	2.2	ขั้นตอนการย่อยสลายในหลุมฝังกลบ	20
รูปที่	2.3	การเปลี่ยนแปลงอัตราส่วนของ BOD ₅₅ COD, COD : TOC, VF : FS ของน้ำชะมูลฝอย	
		ตามอายุของหลุมฝั่งกลบ	23
รูปที่	2.4	สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า	28
รูปที่	2.5	โครงสร้างผลึกของไทเทเนียมไดออกไซด์	29
รูปที่	2.6	กลไกการเกิดปฏิกิริยาต่างๆในกระบวนการโฟโตคะตะลิติก	32
รูปที่	2.7	ขั้นตอนเทกนิกโซล-เจล และผลิตภัณฑ์ต่างๆ	37
รูปที่	2.8	ขั้นตอนการจุ่มเคลือบแบบกะ	38
รูปที่	3.1	ถังปฏิกรณ์สำหรับกระบวนการโฟโตกะตะลิติก	46
รูปที่	3.2	อุปกรณ์ชุบเคลือบผิวตัวเร่งปฏิกิริยา	46
รูปที่	3.3	ขั้นตอนการดำเนินงานในการศึกษาการบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่า	48
รูปที่	3.4	แผนผังแสดงขั้นตอนการเกลือบ Petri dish	50
รูปที่	3.5	แผนผังแสดงการกำจัด COD จากน้ำชะมูลฝอยด้วยกระบวนการ	
		โฟโตกะตะลิติก	54
รูปที่	3.5	แผนผังแสดงการกำจัด $\operatorname{BOD}_{\mathfrak{s}}$ จากน้ำชะมูลฝอยด้วย	
		กระบวนการ โฟโตคะตะลิติก	55
รูปที่	3.6	แผนผังแสดงการกำจัด VFA จากน้ำชะมูลฝอยด้วยกระบวนการ	
		โฟโตกะตะถิติก	56
รูปที่	4.1	การเลี้ยวเบนรังสีเอ็กซ์ของผงไทเทเนียมไดออกไซด์	59
รูปที่	4.2	ภาพถ่าย 3 มิติ ด้วยอุปกรณ์ AFM ของตัวเร่งปฏิกิริยา TiO ₂	60
รูปที่	4.3	ความสามารถในการบำบัดน้ำชะมูลฝอยบนตัวกลาง TiO ₂	62
รูปที่	4.4	ประสิทธิภาพการบำบัค COD ของน้ำชะมูลฝอย	65
รูปที่	4.5	ความสัมพันธ์ระหว่างความเข้มข้น BOD ในน้ำชะมูลฝอยกับเวลาในการเกิดปฏิกิริยา	
		สำหรับกระบวนการ โฟโตคะตะไลติก	66

สารบัญรูป (ต่อ)

			หน้า
รูปที่	4.6	อัตราส่วนระหว่าง BOD _s :COD ในการบำบัคด้วยโฟโตคะตะลิติก	69
รูปที่	4.7	จลนพลศาสตร์ของการเกิดปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอย	
		ร่วมกับตัวเร่งปฏิกิริยา TiO2	71
รูปที่	ค.1	อุปกรณ์ X-ray diffraction (XRD) รุ่น Bruker model D8 Advance	
		สภาวะที่ทำการวิเคราะห์ : Cu Kα radiation at scan rate of 0.02° S-1	98
รูปที่	ค.2	อุปกรณ์ UV-Vis spectrometer ยี่ห้อ Perkin Elmer รุ่น Lambda 650	
		สภาวะที่ทำการวิเคราะห์ : ความยาวคลื่นในช่วง 290–800 nm	98
รูปที่	ค.3	อุปกรณ์ Atomic Force Microscopy (AFM) ยี่ห้อ Asylum research	
		รุ่น MFP-3D-BIO™	99
รูปที่	ค.4	อุปกรณ์วัดความเข้มแสง ยี่ห้อ UV-Light Meter Model UV-340	99
รูปที่	ค.5	ป็เปตอัตโนมัติ ยี่ห้อ Engineered for Excellence BIOHIT	100

คำอธิบายสัญลักษณ์และคำย่อ

Å	อังสตรอม
°C	องศาเซลเซียส
cm	เซนติเมตร
E _g	แถบพลังงาน (energy gap)
e	อิเล็กตรอนที่แถบการนำไฟฟ้า
eV	อิเล็กตรอนโวลต์
g	กรัม
\mathbf{h}^{+}	โฮลที่แถบวาเลนซ์
L	ลิตร
mg	มิลลิกรัม
min	นาที
mL	มิลลิลิตร
μm	ใมโครเมตร
μW	ใมโครวัตต์
nm	นาโนเมตร
0	ออกไซด์ไอออนเรดิกัล (oxide ion radicals)
0 ₂	ซูเปอร์ออกไซด์ไอออนเรดิกัล (superoxide ion radicals)
•OH	ไฮครอกซิลเรติกอล
•OH ₂	เปอร์ไฮดรอกซิลเรติคอล
rms	รากที่สองของค่าความขรุขระเฉลี่ย
UV	รังสีอัลตราไวโอเลต
W	วัตต์

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญ

้ ปัจจุบันประเทศไทยได้มีนโยบายในการส่งเสริมการจัดการขยะมูลฝอยซึ่งได้กำหนดเป็น ้วาระแห่งชาติ พ.ศ. 2557 ที่มีเนื้อหารายละเอียดเกี่ยวกับการจัดการขยะมูลฝอยและของเสียอันตราย จากรายงานสถานการณ์มลพิษของประเทศไทยในปี 2557 พบว่า ประเทศไทยมีปริมาณขยะมูลฝอย ้ชุมชนเกิดขึ้นทั่วประเทศ 26.19 ล้านตัน และมีปริมาณขยะมูลฝอยตกค้างสะสมทั่วประเทศที่ไม่ถูก นำไปกำจัด 14.8 ถ้านตัน [1] ซึ่งเป็นผลอันเนื่องมาจากการพัฒนาอย่างต่อเนื่องในด้านเศรษฐกิจ สังคม อุตสาหกรรม และเกษตรกรรม สำหรับการจัดการขยะมูลฝอยมีรูปแบบหลากหลาย โดยการกำจัดขยะ มูลฝอยส่วนใหญ่นิยมใช้วิธีการฝังกลบ ซึ่งวิธีการคังกล่าวสามารถรองรับขยะมูลฝอยได้ในปริมาณ มากและหลากหลายประเภท เป็นวิธีการที่มีค่าใช้ง่ายในการลงทุนและดำเนินการค่อนข้างต่ำ การ จัดการไม่สลับซับซ้อนมากนัก และมีความยืดหยุ่นมากในการรองรับ ทั้งด้านปริมาณและลักษณะของ ้งยะมูลฝอย [2] แต่วิธีการฝังกลบงยะมูลฝอยนี้ส่งผลกระทบกับสิ่งแวคล้อม เนื่องจากก่อให้เกิดปัญหา ด้านการจัดการน้ำชะมูลฝอย ซึ่งเกิดจากการย่อยสลายโดยกระบวนการชีวภาพ และเกิดจากปริมาณ น้ำฝนที่ตกลงบนพื้นที่หลุมฝังกลบ ทั้งนี้น้ำชะมูลฝอยเป็นน้ำเสียที่มีความสกปรกสูงประกอบไปด้วย สารอินทรีย์ สารอนินทรีย์ และสารแขวนลอยปนเปื้อนในรูปต่างๆ ซึ่งอยู่ในรูปที่ย่อยสลายได้ยาก [3] นอกจากนี้มักจะมีสีน้ำตาลคำที่เกิดจากสารประกอบฮิวมิค (Humic substance) หากน้ำชะมูลฝอย ้ดังกล่าวเกิดการปนเปื้อนสู่สิ่งแวดล้อมไม่ว่าจะเป็น แหล่งน้ำผิวดินหรือแหล่งน้ำใต้ดิน จะก่อให้เกิด ผลกระทบต่อคุณภาพสิ่งแวคล้อมและสุขอนามัยของมนุษย์อย่างมาก กล่าวคือ ทำให้เกิดการ แพร่กระจายเชื้อโรค ปัญหากลิ่นรบกวน ก่อให้เกิดความรู้สึกพึงรังเกียงต่อผู้ที่พบเห็น ส่งผลกระทบ ต่อพืชน้ำและสัตว์น้ำในระบบนิเวศน์

โดยทั่วไปวิธีการบำบัดน้ำชะมูลฝอยส่วนมากที่พบจะใช้ระบบบำบัดทางชีวภาพ [4] แต่ ด้วยข้อจำกัดของกระบวนการทางชีวภาพที่ไม่สามารถกำจัดสารประกอบอินทรีย์เชิงซ้อนหรือสารที่มี เสถียรภาพและความคงตัวสูงที่อยู่ในน้ำชะมูลฝอยได้ ดังนั้นจึงได้มีการประยุกต์ใช้กระบวนการขั้นสูง ในการบำบัดน้ำชะมูลฝอย อาทิเช่น เฟนตัน, โอโซน และเมมเบรน เป็นต้น [5-8] แต่เนื่องจาก กระบวนการข้างต้นมีข้อจำกัดในด้านความยุ่งยาก และอุปกรณ์ในการติดตั้งระบบ ประกอบด้วย ก่าใช้จ่ายในการเดินระบบก่อนข้างสูง งานวิจัยนี้ได้มีการนำกระบวนการโฟโตคะตะลิติกมาประยุกต์ในการบำบัดน้ำชะมูลฝอย สำหรับกระบวนการโฟโตคะตะลิติก (Photocatalytic) เป็นกระบวนการออกซิเดชันขั้นสูง (Advance Oxidation Processes, AOPs) ที่มีศักยภาพในการกำจัดสารอินทรีย์ สารอนินทรีย์ กลิ่นในวัสดุต่างๆ จุลินทรีย์และเชื้อโรคที่ปนเปื้อนในน้ำเสีย ดังนั้นในการศึกษานี้จึงมีวัตถุประสงค์เพื่อศึกษา ประสิทธิภาพของกระบวนการโฟโตคะตะไลติกร่วมกับตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ในการ บำบัดน้ำชะมูลฝอยจากหลุมฝังกลบขยะมูลฝอย

1.2 วัตถุประสงค์การวิจัย

1.2.1 เพื่อศึกษาลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์

1.2.2 เพื่อศึกษาประสิทธิภาพการกำจัด COD และ BOD จากน้ำเสียน้ำชะมูลฝอยโดยใช้ กระบวนการโฟโตคะตะลิติกร่วมกับตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์

1.2.3 ศึกษาจลนพลศาสตร์ของกระบวนการ โฟโตกะตะลิติก

1.3 ขอบเขตของการวิจัย

1.3.1 ศึกษาในถังปฏิกรณ์แบบแบทซ์ (Batch Reactor) ที่เป็นระบบปิด

1.3.2 ตัวเร่งปฏิกิริยาที่ใช้ คือ ไทเทเนียมไดออกไซด์ชนิดฟิล์มบาง ซึ่งเตรียมขึ้นโดยวิธี โซล-เจล

1.3.3 แหล่งกำเนิดแสงที่ใช้ คือ หลอดอัลตราไวโอเลตชนิดเอ ที่มีความยาวคลื่นเท่ากับ 365 nm และมีความเข้มแสง 1,000 μW/cm²

1.3.4 น้ำชะมูลฝอยที่ใช้นำมาจากหลุมฝังกลบเก่าไทรน้อย ตำบลคลองขวาง อำเภอไทร น้อย จังหวัดนนทบุรี

1.3.5 พารามิเตอร์ที่ทำการศึกษาได้แก่ COD, BOD และ VFA

1.4 ประโยชน์ที่คาดว่าจะได้รับ

1.4.1 ทราบลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์

1.4.2 ทราบประสิทธิภาพของการกำจัด COD รวมทั้งติดตามการเปลี่ยนแปลง BOD และ VFA จากน้ำชะมูลฝอยด้วยไทเทเนียมไดออกไซด์โดยกระบวนการโฟโตคะตะลิติก

1.4.3 ทราบค่างถนพลศาสตร์ของกระบวนการโฟโตคะตะลิติก

1.4.4 สามารถนำค่างลนพลศาสตร์ที่คำนวณได้งากกระบวนการสำหรับบำบัดน้ำชะมูลฝอย งากหลุมฝังกลบเก่า ไปประยุกต์ใช้ในการออกแบบหรือคาดการณ์ระบบในการบำบัดน้ำชะมูลฝอย งากหลุมฝังกลบเก่าหลุมอื่นๆ

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 น้ำชะมูลฝอย

น้ำชะมูลฝอย เกิดขึ้นเนื่องจากการซึมผ่านของน้ำในชั้นของมูลฝอยในสถานที่ฝังกลบโดย จะเกิดการชะสารละลายหรือชะเอาสารตะกอน สารแขวนลอย และพวกจุลินทรีย์ต่างๆ ออกมากับน้ำ โดยทั่วไปถ้ามีน้ำไหลผ่านมากก็จะชะเอาสารปนเปื้อนเพิ่มมากขึ้น หากมีการจัดการที่ไม่ถูกต้องจะ ส่งผลกระทบต่อสิ่งแวดล้อม โดยเฉพาะอย่างยิ่งทำให้เกิดการปนเปื้อนของน้ำใต้ดินและน้ำผิวดิน น้ำ ชะขยะจึงเป็นปัญหาหลักที่จะต้องจัดการฝังกลบอย่างถูกหลัก [9] น้ำชะมูลฝอยจะประกอบไปด้วย ของเหลวที่เกิดจากปฏิกิริยาการย่อยสลายของตัวมูลฝอยเอง และส่วนใหญ่น้ำชะมูลฝอยจะเกิดจากการ ซึมผ่านเข้าสถานที่ฝังกลบจากภายนอก เช่น ระบบระบายน้ำ น้ำฝน และน้ำผิวดิน [10] ดังรูปที่ 2.1

รูปที่ 2.1 การเกิดน้ำชะมูลฝอย [11]

น้ำฝนที่ตกลงมาบริเวณหลุมฝังกลบมูลฝอยส่วนหนึ่งกลายเป็นน้ำผิวคิน (Surface runoff) หลังจากที่ผ่านการระเหย การคายน้ำของคินและพืช ส่วนที่เหลือจะถูกเก็บกักไว้ในชั้นคินจนกระทั่ง กวามชื้นที่สะสมในชั้นคินเกิคความจุสนาม (Field capacity) ของคิน น้ำจะซึมลงสู่ชั้นของมูลฝอย โดย ของเหลวที่ซึมลงมาจะถูกสะสมอยู่ในชั้นของมูลฝอยจนกระทั่งถึงค่าความจุสนามของมูลฝอย น้ำ เหล่านี้จะชะละลายสารต่างๆ ออกจากมูลฝอยและซึมลงไปสะสมที่พื้นใต้หลุมฝังกลบมูลฝอย เรียกว่า น้ำชะมูลฝอย (Leachate) [12] 2.1.1 การย่อยสลายของน้ำชะมูลฝอยในหลุมฝังกลบ

ในพื้นที่ผังกลบหลังจากที่มีการผังกลบมูลฝอยโดยมีชั้นดินปิดทับ แล้วมูลฝอยเกิด กระบวนการย่อยสลายโดยจุลินทรีย์ น้ำชะมูลฝอยเป็นผลจากระบวนการเปลี่ยนรูปมูลฝอยทางด้าน กายภาพ เกมี และชีวภาพโดยมีน้ำเป็นตัวร่วมปฏิกิริยา กระบวนการเกิดปฏิกิริยาจะเกิดกลไกทาง กายภาพ 3 ระยะ ได้แก่ การย่อยสลายของแข็ง (Solid phase) การเกิดของเหลว (Liquid phase) และการ เกิดก๊าซ (Gas phase) ของเหลวที่เกิดขึ้นมีปริมาณสารอินทรีย์ทั้งในรูปของสารละลาย สารแขวนลอย และอิออนของสารอินทรีย์ปนเปื้อนสูง แสดงดังรูปที่ 2.2

การย่อยสลายของน้ำชะมูลฝอยในหลุมฝังกลบ ประกอบไปด้วย 5 ขั้นตอนดังนี้ [13]

 Initial adjustment phase เป็นขั้นแรกของการย่อยสลาย ซึ่งในขั้นตอนนี้จะเป็น การย่อยสลายแบบใช้อากาศ (Aerobic condition) เนื่องจากยังมีออกซิเจนหลงเหลืออยู่ในหลุมฝังกลบ

2) Transition phase เป็นขั้นตอนที่เกิดขึ้นเมื่อออกซิเจนเริ่มขาดแคลน กำลังจะเกิด สภาพไร้อากาศ (Anaerobic condition) ในขั้นนี้จะใช้ในเตรตและซัลเฟตในกระบวนการย่อยสลายเกิด ผลิตภัณฑ์เป็นก๊าซไนโตรเจน (N₂) และก๊าซไฮโดรเจนซัลไฟล์ (H₂S) ในขั้นตอนนี้ค่าพีเอชของน้ำชะ มูลฝอยจะเริ่มลดต่ำลง เนื่องจากกรดอินทรีย์และก๊าซการ์บอนไดออกไซด์ (CO₂) ขึ้นในกระบวนการ ย่อยสลาย

3) Acid phase ในขั้นตอนนี้จะแบ่งออกเป็น 2 ขั้นตอนย่อยๆ คือ การเปลี่ยนรูปของ สารประกอบที่มีมวล โมเลกุลสูง เช่น ไขมัน และ โปรตีน เป็นต้น เปลี่ยนไปเป็นสารประกอบที่ เหมาะสมสำหรับจุลินทรีย์เพื่อใช้เป็นแหล่งพลังงานและเซลการ์บอน ถัดไปเป็นขั้นตอนการเปลี่ยน สารประกอบที่ได้จากขั้นตอนแรกไปเป็นสารประกอบที่มีมวล โมเลกุลต่ำประเภทกรดอะซิติก (Acetic acid) และสารประกอบที่มีความเข้มข้นต่ำๆของกรดฟัลวิก (Fulvic) และกรดอินทรีย์ประเภทอื่นๆ ซึ่ง การย่อยสลายในขั้นตอนที่สามนี้ก๊าซที่เกิดส่วนใหญ่จะเป็นก๊าซคาร์บอน ไดออกไซด์ ส่วนก๊าซ ไฮโดรเจนจะเกิดขึ้นเพียงเล็กน้อย จุลินทรีย์ที่เกี่ยวข้องในขั้นตอนนี้เรียกว่า Facultative bacteria และ Obligate anaerobic bacteria จะทำงานควบคู่กัน โดยอัตราการสร้างกรดจะลดลงเรื่อยๆ ส่งผลให้ก่าพีเอช ของน้ำชะมูลฝอยเพิ่มสูงขึ้น ทำให้โลหะหนักละลายน้ำได้น้อยลง ส่งผลให้ก่าโลหะหนักในน้ำชะ มูลฝอยลดลงด้วย

ในขั้นตอนนี้ค่าพีเอชจะลดต่ำลง เนื่องจากการเพิ่มมากขึ้นของกรดอินทรีย์และ ปริมาณก๊าซการ์บอนไดออกไซด์ ส่วนก่ากวามสกปรกในรูปของ BOD, COD และก่าการนำไฟฟ้าของ น้ำชะมูลฝอยจะเพิ่มขึ้น เนื่องจากก่าพีเอชที่ต่ำจะทำให้กวามสามารถในการละลายของกรดอินทรีย์ และธาตุอาหารในน้ำชะมูลฝอยดีขึ้น 4) Methane fermentation phase จุลินทรีย์ในขั้นตอนนี้จะเปลี่ยนกรดอะซิติกและ ก๊าซไฮโครเจน ที่เกิดจากแบคทีเรียชนิดที่สร้างกรด (Acid former) ในขั้นตอนที่ 3 ไปเป็นก๊าซมีเทน (CH₄) และก๊าซการ์บอนไดออกไซด์ จุลินทรีย์ที่เกี่ยวข้องกับกระบวนการย่อยสลายนี้เป็นจุลินทรีย์ที่ สร้างก๊าซมีเทน (Methane former) ซึ่งอยู่ได้ในสภาพไร้อากาศเท่านั้น ในขั้นตอนนี้ Acid former และ Methane former

5) Maturation phase ขั้นตอนสุดท้ายจะเกิดขึ้นหลังจากสารอินทรีย์ที่ย่อยสลายได้ ถูกเปลี่ยนเป็นก๊าซมีเทนและก๊าซการ์บอนไดไซด์แล้ว เมื่อความชื้นยังคงเหลืออยู่ในช่องว่างของมูลฝอย อินทรีย์ที่ยังไม่ได้สัมผัสกับความชื้นจะถูกย่อยสลายและเปลี่ยนรูปต่อไปในขั้นตอนนี้อัตราการเกิด ก๊าซจะลดลงเรื่อยๆ เนื่องจากสารอินทรีย์ที่เหลืออยู่เป็นประเภทย่อยสลายยาก ก๊าซที่เกิดส่วนใหญ่ ได้แก่ ก๊าซมีเทนและก๊าซการ์บอนไดออกไซด์

ร**ูปที่ 2.2** งั้นตอนการย่อยสลายในหลุมฝังกลบ [14]

2.1.2 ลักษณะของน้ำชะมูลฝอย

ปัจจัยสำคัญที่มีผลต่อลักษณะสมบัติและปริมาณของน้ำชะมูลฝอย ได้แก่ ลักษณะ ปริมาณน้ำฝน มูลฝอยที่ฝังกลบ สภาพภูมิอากาศ สภาพภูมิประเทศ สภาพอุทกธรณีวิทยา คุณสมบัติ ของดิน วัสดุกลบทับชั้นสุดท้าย และสภาวะต่างๆ ภายในหลุมฝังกลบ เช่น กระบวนการทางชีวภาพ และทางเกมี กวามชื้น อุณหภูมิ ก่าพีเอช และอายุของสถานที่ฝังกลบมูลฝอย น้ำชะมูลฝอยจากหลุม กลบที่มีอายุน้อยกว่า 5 ปีจะสามารถบำบัดได้ง่าย

โดยสารอินทรีย์ที่พบในน้ำชะมูลฝอยส่วนใหญ่จะประกอบไปด้วยกรดไขมันระเหย อิสระ (Free volatile fatty acids) มากถึง 95% ของสารอินทรีย์ทั้งหมด ซึ่งถูกย่อยสลายเป็น การ์บอนไดออกไซด์ (CO₂) ในสภาวะที่มีอากาศ ผลที่เกิดขึ้นทำให้ pH ลดลงและความสามารถในการ ละลายของสารปนเปื้อนจะสูงขึ้นและจุลินทรีย์กลุ่ม Methanogenic จะเปลี่ยน VFA เป็น Biogas (CH₄, CO₂) ต่อมาเป็นสารที่มีลักษณะคล้ายฟัลวิคซึ่งประกอบด้วยกลุ่ม Carboxyl และ Aromatic hydroxyl เป็นจำนวนมาก สารอินทรีย์ที่เหลือประกอบไปด้วยสารเชิงซ้อนฮิวมิคที่มีลักษณะเหมือนการ์บอนไขดรด และมีมวลโมเลกุลสูง ส่วนน้ำชะมูลฝอยจากหลุมฝังกลบที่มีอายุมาก องค์ประกอบของน้ำจะเป็นสารที่ ย่อยสลายยากเป็นส่วนใหญ่ เช่น กรดฮิวมิค และกรดฟัลวิค เป็นต้น [15] โดยปัจจัยที่ทำให้เกิดความ แตกต่างของลักษณะสมบัติของน้ำชะมูลฝอยมาจากลักษณะทางกายภาพของมูลฝอย ได้แก่ การบคมูล ฝอยให้เป็นชิ้นเล็กๆ การบดอัดมูลฝอย และปริมาณความชื้นในมูลฝอย กระบวนการย่อยสลายมูลฝอย และอายุของหลุมฝังลักษณะคุณสมบัติน้ำชะมูลฝอย ดังตารางที่ 2.1

โดยน้ำชะมูลฝอยส่วนใหญ่จะมีลักษณะสมบัติโดยทั่วไปที่ พบว่า มีสารที่ก่อให้เกิด ความเป็นพิษ 4 ประเภท ได้แก่

- 1) พวกอิออนที่พบบ่อย ได้แก่ แกลเซียม ซัลเฟต โซเดียมและแอม โมเนีย เป็นต้น
- 2) พวกอินทรีย์สาร ได้แก่ BOD และ COD เป็นต้น
- 3) พวกอนินทรีย์สารที่มีปริมาณน้อย ได้แก่ เหล็ก แมงกานีส นิเกิล และตะกั่ว เป็นต้น
- 4) พวกแบกทีเรีย ได้แก่ แบกทีเรียก่อโรค เช่น โคลิฟอร์ม เป็นต้น

				อายุหลุม	ฝังกลบ				
พาราจิเตอร์		<5ปี			จ	>10 ปี			
M I 9 1998910 9	Hong	0	South	Italy	Turkey	Brazil	France	Thailand	
	Kong	Greece	Korea						
COD	15,700	70,900	24,400		9,500	3,460	1,339	4,300	
BOD	4,200	26,800	10,800	1,270	-	150	80	418	
BOD:COD	0.27	0.38	0.44	0.25	-	0.04	0.06	0.10	
pН	7.7	6.2	7.3	8.38	8.15	8.2	8.55	8.4	
SS	-	950	2,400		-	-	-	-	
TKN	-	3,400	1,766	1,670	1,450	-	470	2,186	
NH ₃ -N	2,260	3,100	1,682	1,330	1,270	800	-	1,934	
Organic		80% VFA		5-30% VFA+ Humic and fulvic acids		Humic and fulvic acids			
compounds									
Heavy metals	L	Low - medium					Low		
Biodegradabili	ty	Important		Medi	um		Low		

ตารางที่ 2.1 ลักษณะของน้ำชะมูลฝอยตามอายุของหลุมฝังกลบ [9]

ความเข้มข้นของสารอินทรีย์และอัตราส่วนของ BOD : COD จะสูงในช่วงแรกของ การฝังกลบ และการย่อยสลายของมูลฝอยจะลคลงเมื่ออายุของหลุมฝังกลบมากขึ้น สามารถอธิบายได้ ดังรูปที่ 2.3

โดยในช่วงแรกปริมาณก๊าซมีเทนต่ำและอัตราส่วนของ BOD:COD สูง แต่เมื่ออายุ ของหลุมฝังกลบมากขึ้น ปริมาณก๊าซมีเทนจะสูงขึ้นขณะที่อัตราส่วน BOD:COD ลดลง เนื่องจาก สารอินทรีย์เกือบทั้งหมดกลายเป็นก๊าซมีเทน นอกจากนี้อัตราส่วนของ COD:TOC มีแนวโน้มลดลง เมื่ออายุของหลุมฝังกลบมากขึ้น โดยอินทรีย์การ์บอนซึ่งเป็นแหล่งพลังงานที่สำคัญสำหรับการ เจริญเติบโตของจุลินทรีย์ ซึ่งถูกย่อยสลายเหลือน้อยลงตามอายุของหลุมฝังกลบที่มากขึ้น ดังนั้น น้ำชะมูลฝอยจากหลุมฝังกลบที่มีอายุมากจะไม่เหมาะสมต่อการบำบัดทางชีวภาพ [16]

รูปที่ 2.3 การเปลี่ยนแปลงอัตราส่วนของ BOD : COD, COD : TOC และ VF : FS ของน้ำชะมูลฝอย ตามอายุของหลุมฝังกลบ ดัดแปลงมาจาก [16]

2.1.3 การบำบัดน้ำชะมูลฝอย

การจัดการน้ำชะมูลฝอยเพื่อป้องกันการปนเปื้อนน้ำชะมูลฝอยลงสู่ดิน แหล่งน้ำผิว ดินและแหล่งน้ำใต้ดิน นิยมใช้ 4 วิธี ได้แก่

 การหมุนเวียนน้ำชะมูลฝอย (Recycling) เป็นการบำบัคน้ำชะมูลฝอยที่เกิดจาก ปฏิกิริยาการย่อยสลายสารอินทรีย์โดยจุลินทรีย์ในหลุมฝังกลบ เนื่องจากในระยะแรกน้ำชะมูลฝอยจะ มีความเข้มข้นของ BOD, COD, ธาตุอาหาร และโลหะหนักในปริมาณสูง เมื่อมีการหมุนเวียนน้ำชะ มูลฝอยกลับไปสู่กองขยะมูลฝอยในหลุมฝังกลบ สารต่างๆ จะถูกย่อยสลายโดยจุลินทรีย์อย่างรวดเร็ว โดยกรดอินทรีย์จะถูกเปลี่ยนเป็นก๊าซการ์บอนไดออกไซด์ ทำให้ความเป็นกรด -ค่างของน้ำชะมูลฝอย มีก่าสูงขึ้น ส่งผลให้โลหะหนักตกตะกอนอยู่ภายในหลุมฝังกลบ

 การระเหย (Evaporation) เป็นการเปลี่ยนสถานะน้ำชะมูลฝอยจากของเหลวไป เป็นก๊าซ และแพร่สู่บรรยากาศ โดยอาศัยพลังงานและความร้อนช่วยในการระเหย ซึ่งวิธีนี้อาจ ก่อให้เกิดก๊าซซึ่งเป็นมลทางอากาศได้

การนำน้ำชะมูลฝอยไปบำบัดในระบบบำบัดน้ำเสียรวม โดยการนำน้ำชะมูลฝอย

้ไปบำบัครวมกับน้ำเสียชุมชนที่โรงบำบัค แต่วิธีนี้ไม่นิยมใช้เนื่องจาก ความเป็นพิษของน้ำชะมูลฝอย อาจส่งผลให้การทำงานของกระบวนการบำบัคทางชีวภาพล้มเหลวได้ และค่าใช้จ่ายในการนำน้ำชะ มูลฝอยไปยังระบบบำบัคก่อนข้างสูง

 การบำบัดน้ำชะมูลฝอย สามารถทำได้หลายวิธีอยู่กับองค์ประกอบหลัก หรือสาร ปนเปื้อนในน้ำชะมูลฝอยที่ต้องการกำจัดออกไป โดยกระบวนการที่สำคัญในการบำบัดน้ำชะมูลฝอยมี ดังนี้ [17]

- กระบวนการทางชีวภาพ (Biological process) การบำบัดด้วยกระบวนการทาง ชีวภาพจะอาศัยจุลินทรีย์ในการลดปริมาณสารอินทรีย์ในน้้ำ โดยจุลินทรีย์เป็นแหล่งอาหารสำหรับ ผลิตพลังงานและการเจริญเติบโต สารอินทรีย์ที่เหมาะสมใช้เป็นอาหารส่วนใหญ่เป็นสารอินทรีย์ที่มี โกรงสร้างไม่ซับซ้อน มวลโมเลกุลต่ำ และง่ายต่อการย่อยสลายทางชีวภาพ กระบวนการนี้นิยมใช้ลด ปริมาณสารอินทรีย์ที่วัดในรูป BOD และ COD โดยให้ประสิทธิภาพสูงมากในการบำบัดลึง 60 -80 % สำหรับน้ำชะมูลฝอยจากสถานที่ฝังกลบมูลฝอยใหม่ที่มีอัตราส่วนของ BOD : COD สูง เนื่องจากมีสารอินทรีย์ที่ง่ายต่อการย่อยสลายสูง มีความเหมาะสมในการบำบัดด้วยกระบวนการทาง ชีวภาพ ส่วนน้ำชะมูลฝอยจากสถานที่ฝังกลบมูลฝอยเก่ามักมีอัตราส่วนของ BOD : COD ต่ำ เป็นผล มาจากมีสารอินทรีย์ที่ง่ายต่อการย่อยสลายสูง มีความเหมาะสมในการบำบัดด้วยกระบวนการทาง ชีวภาพ ส่วนน้ำชะมูลฝอยจากสถานที่ฝังกลบมูลฝอยเก่ามักมีอัตราส่วนของ BOD : COD ต่ำ เป็นผล มาจากมีสารอินทรีย์ที่ง่ายต่อการย่อยสลายด่ำ จึงไม่เหมาะสำหรับการบำบัดการบำบัดด้วย กระบวนการทางชีวภาพเพียงอย่างเดียว เนื่องจากประสิทธิภาพในการบำบัดต่ำ (น้อยกว่า 50 %) และ ด้องใช้การบำบัดทางเกมี/กายภาพร่วมด้วย เพื่อให้มีประสิทธิภาพในการบำบัดได้ตามเกณฑ์มาตรฐาน คุณภาพน้ำทิ้ง

- กระบวนการทางเคมี/กายภาพ (Chemical/Physical processes) การบำบัดน้ำชะมูล ฝอยด้วยกระบวนการทางเคมี/กายภาพ เช่น การตกตะกอนทางเคมี การดูดซับด้วยถ่านกัมมันต์และ การแลกเปลี่ยนไอออน เป็นต้น กระบวนการนี้นิยมใช้สำหรับบำบัดน้ำชะมูลฝอยจากสถานที่ฝังกลบ มูลฝอยเก่า ซึ่งมีปริมาณสารอินทรีย์ที่ย่อยสลายง่ายต่ำ มีอัตราส่วนของ BOD:COD น้อยกว่า 0.2 โดย ใช้เป็นระบบบำบัดขั้นต้นแต่ปัจจุบันมีการประยุกต์ใช้ร่วมกับกระบวนการบำบัดทางชีวภาพ เพื่อ บำบัดน้ำชะมูลฝอยจากหลุมฝังกลบมูลฝอยใหม่ให้ได้ตามเกณฑ์มาตรฐานคุณภาพน้ำทิ้ง นอกจากนี้ยัง มีการนำกระบวนการดังกล่าวไปใช้บำบัดขั้นสุดท้ายสำหรับน้ำชะมูลฝอยจากหลุมฝังกลบมูลฝอยใหม่ [18] - กระบวนการออกซิเดชันขั้นสูง (Advanced Oxidation Process, AOP) เป็น กระบวนการทางเกมีวิธีหนึ่งโดยอาศัยสารออกซิไดซ์ (Oxidizing agent) ที่มีก่าต่างศักย์สูง เช่น O₃/UV, H₂O₂/UV, O₃/H₂O₂/UV, H₂O₂/Ee²⁺, TiO₂/UV และ TiO₂/H₂O₂/UV เป็นด้น ทั้งนี้กระบวนการ ออกซิเดชันขั้นสูงต้องอาศัยความรู้ทางเกมีก่อนข้างมาก แต่ข้อดีประสิทธิภาพการบำบัดสูงสามารถ บำบัดได้ทั้ง สารอินทรีย์สารอนินทรีย์ สารพิษ โลหะหนัก และสารที่ย่อยสลายยาก โดยการใช้เทกนิก ออกซิเดชันขั้นสูงมีหลักการ คือ เมื่อเติมสารออกซิไดซ์สัมผัสกับสารมลพิษในน้ำเสียจะมีการ แลกเปลี่ยนอิเล็กตรอนวงนอกสุด (Valiant electron) สารออกซิไดซ์ซึ่งมีความสามารถในการรับ อิเล็กตรอนสูงจะก่อยๆ ทำการแตกสลายพันธะ (Break down) โดยสารอินทรีย์ที่มีโครงสร้างซับซอน จำพวกพันธะวงแหวน และพันธะกู่จะลดความโครงสร้างความซับซ้อนของโมเลกุลกลายเป็น สารอินทรีย์ที่ย่อยสลายง่ายขึ้น จึงส่งผลให้ความเป็นพิษลดลงจนเกิดการกำจัดอย่างสมบูรณ์ของ ปฏิกิริยา (Mineralization) จนกลายเป็นก๊าซการ์บอนไดออกไซด์ ออกซิเจน และน้ำ [19] ซึ่งสามารถ สรุปการบำบัดน้ำชะมูลฝอยตามกระบวนการต่างๆที่กล่าวมาข้างต้น ได้ดังตารางที่ 2.2

กระบวนการ	ระบบ	ศึกษาการบำบัด	ประสิทธิภาพ
ทางเคมี	สารตกตะกอน	Fe, Zn, Cr, Cu llaz	ประสิทธิภาพในการบำบัด Fe, Zn สูง
	(Coagulation) Mn ส่วน Cr, Cu, Mn มีค่าร		ส่วน Cr, Cu, Mn มีค่าระดับกลาง และ
			สามารถบำบัด Cd, Pb และ Ni ได้น้อย
	ออกซิเคชั่นเคมี	สารอินทรีย์	ประสิทธิภาพในการบำบัคน้ำชะมูลฝอย
	(Chemical oxidation)	ition)	
	3, 24		แต่สามารถบำบัดสารอินทรีย์ได้อย่าง
	E III		สมบูรณ์
	การแลกเปลี่ยนไอออน	COD	สามารถบำบัดได้สูงกว่า 10–70 % และ
	(Ion exchange)	าดโมโลยีรกับ	สามารถบำบัคโลหะหนักได้บ้าง
			เล็กน้อย
ทางกายภาพ	วัสคุดูคซับ	COD	สามารถบำบัดได้สูงกว่า 30 – 70 % เมื่อ
	(Adsorption)		ผ่านการบำบัดขั้นต้นด้วยกระบวนการ
			ทางชีวภาพ
	ออส โมซิสผันกลับ	TDS	สามารถบำบัดได้สูงกว่า 90 – 96 %
	(Reverse osmosis)		

a			Ð.
ตารางท่	2.2	สรุปกระบวนการบ้าบคน้ำชะมูลฝอยตางๆ [19)

กระบวนการ	ระบบ	ศึกษาการบำบัด	ประสิทธิภาพ
ทางชีวภาพ	ระบบตะกอนเร่ง	BOD	ประสิทธิภาพอาจมีการเปลี่ยนแปลงได้
	(Activated sludge)		ขึ้นอยู่กับระยะเวลากักเก็บสามารถ
			บำบัคค่า BOD ได้สูงกว่า 90 %
	ระบบบ่อเติมอากาศ	BOD	ดำเนินการง่าย ในระบบมือัตราน้ำเข้า
	(Aerated lagoons)		ระบบน้อยสามารถบำบัคค่า BOD ได้สูง
			กว่า 90 %
	ระบบบ่อไร้อากาศ	สารอินทรีย์	เป็นระบบที่การบำบัดสารอินทรีย์
	(Anaerobic lagoons)		สมบูรณ์ ประสิทธิภาพการบำบัดสูง

ตารางที่ 2.2 สรุปกระบวนการบำบัดน้ำชะมูลฝอยต่างๆ [19]

ทั้งนี้การเลือกใช้ระบบบำบัดน้ำชะมูลฝอยแต่ละกระบวนการขึ้นอยู่กับลักษณะ กุณสมบัติของน้ำชะมูลฝอย คุณภาพน้ำทิ้งที่ต้องการเทคโนโลยีที่มี และความชำนาญของบุคลากร ตลอดจนอายุของสถานที่ฝังกลบมูลฝอย ก็อาจใช้คาดการณ์ลักษณะคุณสมบัติของน้ำชะมูลฝอยและ ระบบบำบัดน้ำชะมูลฝอยที่เลือกใช้ได้ ดังตารางที่ 2.3

อายุหลุมฝังกลบ กระบวนการบำบัด < 5 ปี 5-10 ปี >10 ปี COD (mg/L) >10,000 500-10,000 <500 พอใช้ ดี ต่ำ **Biological Treatment** พอใช้ ต่ำ ต่ำ Chemical Precipitation ต่ำ พอใช้ พอใช้ Chemical Oxidation (Ca(ClO₂)) ต่ำ พอใช้ พอใช้ O_3 พอใช้ ଶି ดี **Reverse** Osmosis ต่ำ พอใช้ ଶି Activated Carbon ต่ำ พอใช้ พอใช้ Ion Exchange Resin

ตารางที่ 2.3 การบำบัดน้ำชะมูลฝอยโดยวิธีการต่างๆสำหรับสถานที่ฝังกลบใหม่และเก่า [18]

เนื่องจากลักษณะน้ำชะมูลฝอยเปลี่ยนแปลงตามอายุการฝังกลบ ระบบบำบัดน้ำชะ มูลฝอยเพียงขั้นตอนเดียวอาจไม่ได้ผลดี จึงควรประกอบด้วยหลายขั้นตอนตามลักษณะน้ำชะมูลฝอย แต่ละระยะ โดยเริ่มจากการใช้การหมุนเวียนคืนลงไปในหลุมฝังกลบเพื่อเร่งการสลายตัวทางชีวภาพ ของน้ำชะมูลฝอย เนื่องจากช่วงแรกของการฝังกลบจะมีกวามเข้มข้นของก่า BOD ต่ำ ขั้นต่อไปจะเน้น การกำจัดสารอินทรีย์ และการเกิดในตริฟิเกชันเพื่อบำบัดแอมโมเนียโดยใช้กระบวนการทางชีววิทยา และขั้นสุดท้ายจำเป็นต้องใช้วิธีการทางกายภาพเคมี

2.2 กระบวนการโฟโตคะตะลิติก

กระบวนการ โฟโตคะตะลิติก เป็นกระบวนการที่ใช้ตัวเร่งปฏิกิริยา (Catalyst) กระตุ้น ปฏิกิริยาที่ใช้แสง (Photoreaction) ทำให้ปฏิกิริยานั้นๆ เกิดได้เร็วขึ้น กล่าวคือเมื่อ โมเลกุลของสาร ปนเปื้อนถูกดูดติด (Adsorbed) ไว้บนผิวของตัวเร่งปฏิกิริยา จะเกิดปฏิกิริยาขึ้นที่ผิวของตัวเร่งปฏิกิริยา โดยโมเลกุลที่ถูกดูดติดเกิดการเปลี่ยนแปลงในด้านของการจัดเรียงตัวของอิเล็กตรอน และบางพันธะ ของโมเลกุลเริ่มสลายตัว ดังนั้นกระบวนการโฟโตคะตะลิติกจะประกอบด้วย 2 ขั้นตอน คือ

- การดูดติด (Adsorption)
- การฉายแสง (Irradiation)

ทั้งนี้องค์ประกอบพื้นฐานที่สำคัญของกระบวนการดังกล่าวคือ ตัวเร่งปฏิกิริยา และ พลังงานแสง

2.2.1 กระบวนการดูคซับ (Adsorption process)

กระบวนการดูดซับเป็นความสามารถของสารบางชนิดในการดึงโมเลกุลหรือ คอลลอยด์ซึ่งอยู่ในของเหลวหรือก๊าซให้มาเกาะบนผิวของตัวเร่งปฏิกิริยา ปรากฏการณ์เช่นนี้จะเป็น การเคลื่อนย้ายสารจากของเหลวหรือก๊าซมายังผิวของของแข็งโมเลกุลหรือคอลลอยค์ เรียกว่า ตัวถูก ดูดซับ (Adsorbate) ส่วนตัวเร่งปฏิกิริยาซึ่งเป็นของแข็งที่มีผิวเป็นที่เกาะจับเรียกว่า ตัวดูดซับ (Adsorbent) การเกาะจับของโมเลกุลบนผิวของสารอาจเกิดขึ้นด้วยแรงทางกายภาพหรือด้วยแรงทาง เคมีหรือทั้งสองอย่างรวมกัน ส่วนในกระบวนการโฟโตคะตะลิติกการดูดซับจะเกิดจากแรงทางเคมี เป็นหลัก

2.2.2 การฉายแสง (Irradiation process)

ตัวเร่งปฏิกิริยาถูกกระตุ้นด้วยพลังงานแสงที่มีพลังงานเพียงพอ หรือมีพลังงาน มากกว่าหรือเท่ากับแถบช่องว่างพลังงาน (Band gap) ของสารกึ่งตัวนา ซึ่งพลังงานที่น่าสนใจใน กระบวนการ โฟโตกะตะลิติก คือ พลังงานจากรังสีอัลตราไวโอเลต (Ultraviolet radiation) เป็นรังสีที่ มองไม่เห็นด้วยตาเปล่า มีความยาวกลื่นอยู่ในช่วง 100-400 นาโนเมตร ดังรูปที่ที่ 2.4 สามารถแบ่งออก ได้เป็น 4 ช่วงกลื่น คือ

- อัลตราไวโอเลตชนิคเอ (Ultraviolet A) ความยาวคลื่น 400-315 นาโนเมตร
- อัลตราไวโอเลตชนิดบี (Ultraviolet B) ความยาวคลื่น 315-280 นาโนเมตร
- อัลตราไวโอเลตชนิดซี (Ultraviolet C) ความยาวคลื่น 280-100 นาโนเมตร

ซึ่งความเข้มของแสงอัลตราไวโอเลตที่ส่งผ่านจากแสงอาทิตย์มายังพื้นผิวโลกจะ ลดลงอย่างมากในชั้นบรรยากาศซึ่งเกิดจากการถูกดูดกลืนโดยโอโซนในบรรยากาศชั้นสตราโตสเฟียร์ และการกระเจิงของแสง ทำให้แสงอัลตราไวโอเลตที่ส่องผ่านมายังพื้นโลกมีจำกัดและปริมาณน้อย มาก จึงต้องมีการใช้หลอดอัลตราไวโอเลตเป็นแหล่งกำเนิดแสงในกระบวนการโฟโตกะตะลิติก [20]

ใทเทเนียมไดออกไซค์มีพลังงานของแถบพลังงาน (Band gap) ประมาณ 3.2 eV ดังนั้นการให้พลังงานแก่ระบบต้องให้พลังงานมากกว่าพลังงานของแถบพลังงานปฏิกิริยาโฟโตคะตะ ลิติกจึงจะเกิดขึ้นได้ ซึ่งช่วงของแสงอัลตราไวโอเลตที่มีความยาวคลื่นต่ำกว่า 400 nm จะให้ก่า พลังงานที่มากกว่าหรือเท่ากับแถบพลังงานของไทเทเนียมไดออกไซด์

รูปที่ 2.4 สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า [21]

2.2.3 ตัวเร่งปฏิกิริยาในกระบวนการโฟโตคะตะลิติก

ตัวเร่งปฏิกิริยาในกระบวนการโฟโตคะตะถิติกนั้น จะมีอยู่ 2 ชนิด ได้แก่โลหะตัวนำ (Transition metal) เช่น ทองแดง โครเมียม นิเกิล เป็นต้น และสารกึ่งตัวนำ (Semiconductor) เช่น ไทเทเนียมไดออกไซด์ แกดเมียมซัลไฟด์ สังกะสีออกไซด์ เป็นต้น ซึ่งองก์ประกอบของสารกึ่งตัวนำ ประกอบด้วย แถบวาเลนส์ (Valence band) และแถบการนำไฟฟ้า (Conduction band) ที่อยู่โดยไม่ ติดกันถูกกั้นด้วยช่องว่างแถบพลังงาน (Band gap) ซึ่งมีแถบพลังงาน (E₁) กั้นอยู่

เนื่องจากในโลหะทรานซิชันอิเล็กตรอนที่ได้รับพลังงานกระตุ้นให้อยู่ในระดับ สภาวะกระตุ้น (Excited State) จะกลับสู่สภาวะพื้น (Ground state) ได้ง่ายและรวดเร็วกว่าใน สารกึ่ง ตัวนำ เพราะในโลหะทรานซิชันไม่มีแถบพลังงานระหว่างระดับชั้นพลังงาน ดังนั้นจึงนิยมใช้สารกึ่ง ตัวนำเป็นตัวเร่งปฏิกิริยาในปฏิกิริยาโฟโตคะตะลิติก สารกึ่งตัวนำที่นิยมนำมาใช้มีหลายชนิด หนึ่งใน จำนวนสารกึ่งตัวนำหลายๆ ชนิดที่นิยมใช้ ได้แก่ ไทเทเนียมไดออกไซด์ เนื่องจากมีรากาไม่แพงไม่ เป็นพิษ ความสามารถในการละลายต่ำ ความเสลียรสูง และทนทานต่อการกัดกร่อน

ใทเทเนียมเป็นโลหะสีเทา มีมวลอะตอมเท่ากับ 47.9 ทนทานต่อการกัดกร่อน ไม่ เป็นสารไวไฟ มีเลขออกซิเดชันเป็น +4, +3 และ +2 แต่สรูปที่พบโดยทั่วไปเป็น +4 ส่วนไทเทเนียม ใดออกไซด์ที่เป็นผงสีขาวมีมวลโมเลกุลประมาณ 79.9 โดยทั่วไปจะอยู่ในรูปผลึก 3 รูป คือ รูไทล์ (Rutile) อนาเทส (Anatase) และบรุกไกต์ (Brookite) ดังแสดงภาพ 2.5

66610 Light 61111 [22]				
คุณสมบัติ	หน่วย	รูไทล์	อนาเทส	บรูคไคท์
ลักษณะผลึก	-	เตตระ โกนอล	เตตระ โกนอล	ออร์ โชรอมบิค
ช่องว่างพลังงาน	eV	3.03	3.20	
ความแข็ง	Mohs	6.0 - 7.0	5.5 - 6.0	7.0 - 7.5
ความหนาแน่น	g/cm ³	4.250	3.894	4.170
ดัชนีหักเห	-	2.71	2.52	-
ยูนิตเซลล์				
-แถคติกกอนสแตนท์, a	Å	4.593	3.784	9.184
-แถคติกกอนสแตนท์, b	Å		-	5.447
-แถกติกกอนสแตนท์, c	Å	2.959	9.515	5.145
พลังงานอิสระกิบส์, $\Delta \mathrm{G}^\circ\mathrm{f}$	kcal/mole	- 212.6	-211.4	-
จุดหลอมเหลว	°C	1,858	เปลี่ยนเป็นผลึกรู ไทล์	-
	Fr 20	SP	ที่อุณหภูมิสูง 915 °C	

ตารางที่ 2.4 การเปรียบเทียบลักษณะสมบัติของไทเทเนียมใดออกไซด์ ระหว่างรูไทล์, อนาเทส และบรคไคท์ [22]

จากภาพ 2.5 โครงสร้างผลึกของไทเทเนียมไดออกไซด์ทั้งสามชนิดนี้มีความ แตกต่างกันซึ่งรูไทล์มีความเสถียรมากที่สุด รองลงมาคือ บรุคไคต์ ส่วนอนาเทส มีความเสถียรต่ำที่สุด บรุคไคต์ ไม่เป็นที่นิยมใช้กันเนื่องมาจากทำให้บริสุทธิ์ได้ยาก ส่วนรูไทล์ไม่เหมาะสมที่จะนำมาใช้ เป็นตัวเร่งปฏิกิริยาเพราะเกิดการรวมตัวกันใหม่ (Recombination) ของอิเล็กตรอนและโฮลได้ง่ายและ เป็นสารดูดซับ (Absorbent) ที่มีความสามารถในการดูดกลืนต่ำกว่าอนาเทส แสดงการเปรียบเทียบ ลักษณะสมบัติของไทเทเนียมไดออกไซด์ระหว่างรูไทล์และอนาเทส ดังตารางที่ 2.4

2.2.4 กลไกการเกิดปฏิกิริยาในกระบวนการโฟโตกะตะลิติก

ในกระบวนการเร่งปฏิกิริยาด้วยแสงปฏิกิริยารีดอกซ์เกิดขึ้นโดยตัวเร่งปฏิกิริยาทั้งใน โลหะทรานซิชันและสารกึ่งตัวนำ จะประกอบด้วยแถบวาเลนซ์ (Valence band) และแถบการนำไฟฟ้า (Conduction band) โดยที่ในโลหะทรานซิชันจะมีแถบวาเลนซ์และแถบการนำไฟฟ้าจะอยู่ติดกัน ส่วน ในสารกึ่งตัวนำแถบวาเลนซ์และแถบการนำไฟฟ้าจะถูกกั้นด้วยแถบพลังงาน สารกึ่งตัวนำเมื่อได้รับ พลังงานโดยการฉายแสงด้วยพลังงานแสงที่มากกว่าแถบพลังงาน อิเล็กตรอนในสารกึ่งตัวนำจะถูก กระตุ้นให้เคลื่อนที่จากแถบวาเลนซ์ไปยังแถบการนำไฟฟ้าทำให้เกิดโฮล (Hole) ขึ้นที่แถบวาเลนซ์ ลักษณะนี้ทำให้เกิดกู่อิเล็กตรอน-โฮล (e⁷h⁺pairs) การเคลื่อนที่ของอิเล็กตรอนจะเกิดขึ้นได้สองแบบ คือ อิเล็กตรอนเคลื่อนที่จากแถบการนำไฟฟ้าไปยังตัวรับอิเล็กตรอนในสารละลาย (เกิดเป็นปฏิกิริยา รีดักชัน) หรืออิเล็กตรอนจะเคลื่อนที่จากตัวให้อิเล็กตรอนในสารละลายไปยังโฮลในแถบวาเลนซ์ (เกิดเป็นปฏิกิริยาออกซิเดชัน) การเกิดกู่อิเล็กตรอน-โฮล แสดงดังสมการ 2.3-2.6 แสดงให้เห็นถึง กระบวนการเร่งปฏิกิริยาด้วยแสง

$$TiO_2 + hv$$
 $TiO_2 + e^{i} + h^{+}$ (2.3) $e^{i} + h^{+}$ Heat(2.4) $h^{+} + Organic$ Oxidized Organic(2.5) $\bullet OH + Organic$ Oxidized Organic(2.6)

สำหรับสมการที่ 2.4 แสดงให้เห็นถึงปฏิกิริยาการกลับมารวมตัวกันใหม่ของอิเล็กตรอน กับโฮล ซึ่งสามารถเกิดขึ้นได้อย่างรวดเร็วจนกลายเป็นตัวขัดขวางการเกิดปฏิกิริยาทำให้ประสิทธิภาพ กระบวนการเร่งปฏิกิริยาด้วยแสงต่ำลงในตัวเร่งปฏิกิริยาที่เป็นโลหะทรานซิชัน การกลับมารวมตัวกัน ใหม่ของอิเล็กตรอนกับโฮลเกิดขึ้นได้อย่างรวดเร็วมากเนื่องจากไม่มีแถบพลังงาน โดยแตกต่างจาก การเกิดปฏิกิริยาในสารกึ่งตัวนำที่มีแถบพลังงานเป็นตัวขัดขวา การกลับมารวมตัวกันใหม่ของ อิเล็กตรอนกับโฮล ทำให้เกิดกู่อิเล็กตรอนกับโฮลนานขึ้น ดังนั้นจะเห็นว่าการกลับมารวมตัวกันใหม่ ของอิเล็กตรอนกับโฮล ทำให้เกิดกู่อิเล็กตรอนกับโฮลนานขึ้น ดังนั้นจะเห็นว่าการกลับมารวมตัวกันใหม่ ของอิเล็กตรอนกับโฮล ทำให้เกิดกู่อิเล็กตรอนกับโฮลนานขึ้น ดังนั้นจะเห็นว่าการกลับมารวมตัวกันใหม่ ของอิเล็กตรอนกับโฮล ก็ในสิ่งสำคัญมากในปฏิกิริยาที่จะต้องให้ความสนใจในการขัดขวางการรวมตัว กับอิเล็กตรอนกับโฮล นั้นจะต้องมีตัวเข้าไปทำปฏิกิริยากับอิเล็กตรอนหรือโฮล ซึ่งตัวที่จะทำปฏิกิริยา กับอิเล็กตรอนหลักๆ คือ ออกซิเจนและไฮโดรเจนไอออน (H⁺) ส่วนตัวที่ทำปฏิกิริยากับโฮล คือ น้ำ และไฮดรอกไซด์ไอออน (OH)

เมื่อเกิดคู่อิเล็กตรอนกับโฮลขึ้น โฮลจะเคลื่อนที่ไปอยู่ที่ผิวของอนุภาคตัวเร่งปฏิกิริยา แสดงดังรูปที่ 2.4 และจะกลายเป็นตัวออกซิ ไดซ์ที่รุนแรง ซึ่งสามารถออกซิ ไดซ์สารอินทรีย์ได้ โดยตรง ดังสมการ 2.5 (เป็นปฏิกิริยารองที่เกิดขึ้นได้น้อยมาก) หรือทำปฏิกิริยาออกซิเดชัน กับไฮดรอกไซด์ไอออนเกิดเป็นไฮดรอกซิลเรดิกอล (Hydroxyl redical, OH•) ไฮดรอกซิลเรดิกอลนี้จะ ไปออกซิไดซ์สารอินทรีย์อีกทีหนึ่งซึ่งเป็นปฏิกิริยาหลักที่สำคัญ ดังสมการ 2.6

ร**ูปที่ 2.6** กลไกการเกิดปฏิกิริยาต่างๆในกระบวนการ โฟโตกะตะลิติก ดัดแปลงมาจาก [22]

นอกจากนี้ โฮลยังสามารถทำปฏิกิริยากับน้ำได้เป็นไฮครอกซิลเรคิคอลได้เช่นกันดัง สมการ 2.9 ข้างล่างนี้ ส่วนอิเล็กตรอนที่ผิวของสารกึ่งตัวนำจะเกิคปฏิกิริยารีคักชันกับออกซิเจนที่ บริเวณผิวของสารกึ่งตัวนำเกิคเป็นซุปเปอร์ออกไซค์เรคิคอล (Superoxide redical, O₂) ตามสมการ 2.10 ในขณะที่ถ้าสภาวะในการทคลองมีปริมาณออกซิเจนไม่เพียงพอไฮโครเจนไอออนซึ่งเกิดจาก การแตกตัวของจะมีบทบาทเข้ามารับอิเล็กตรอนแทน เกิคเป็นไฮโครเจนเรคิกอล (Hydrogen radical, H•) ตามสมการ 2.14 ซุปเปอร์ออกไซค์เรคิคอลที่เกิคขึ้นจะไปทำปฏิกิริยาต่อกับน้ำเกิคเป็นไฮโครเจน เปอร์ออกไซค์ ซึ่งก่อให้เกิคเป็นไฮครอกซิลเรคิกอลต่อไป ไฮครอกซิลเรคิกอลนี้เป็นตัวออกซิไคซ์ หลักในปฏิกิริยาโฟโตกะตะลิติก เพราะไฮครอกซิลเรติกอลเป็นตัวออกซิไคซ์ ที่รุนแรงมากรองจาก F₂ แต่สูงกว่า O₃ ก่าศักย์ออกซิเคชัน (Oxidation potential) ของตัวออกซิไคซ์ชนิคต่างๆ แสดงไว้ในตาราง ที่ 2.5 สมการแสดงการเกิดเรดิกอลต่างๆ เป็นดังนี้

H ₂ O	>	$H^{+} + OH^{-}$	(2.7)
$OH^{-} + h^{+}_{vb}$	>	•OH	(2.8)
$h^+ + H_2O$		$\bullet \mathrm{OH} + \mathrm{H}^{+}$	(2.9)
$O_2 + e^{-1}$	>	O_2	(2.10)

 $\mathbf{h}^{+} + \mathbf{O}_{2}^{-} \qquad \qquad \bullet \mathbf{OH}_{2} \qquad (2.11)$

$$2H_2O + O_2^{-1} \longrightarrow 2H_2O \qquad (2.12)$$

(- - - - -

$$H_2O_2 \longrightarrow 2 \cdot OH$$
 (2.13)

$$h^+ + e^- \longrightarrow H$$
 (2.14)

โดยที่

•OH = ไฮครอกซิลเรติคอล O₂ = ซุปเปอร์ออกไซด์เรติคอล •OH₂ = เปอร์ไฮครอกซิลเรติคอล = ไฮโดรเจนเรติคอล •H

ตารางที่ 2.5 ศักย์ออกซิเคชัน (Oxidation Potential) ของตัวออกซิไคซ์ชนิคต่างๆ [2]

Oxidation agent	Redox potential (Volts)
Fluorine, F ₂	3.03
Hydroxyl radical, •OH	2.80
Ozone, O ₃	2.08
Hydrogen peroxide H ₂ O ₂	1.78
Hypochlorite	1.49
Chlorine	1.36
Chlorine dioxide	1.27
Oxygen	1.23

2.2.5 งถนพลศาสตร์ของโฟโตคะตะลิติก (Kinetics of photocatalysis) กระบวนการ โฟโตคะตะลิติกมีกลไกในเกิดปฏิกิริยา สำหรับย่อยสลายสารประกอบ อินทรีย์แบ่งออกเป็น 5 ขั้นตอน ดังนี้ (การอีก)

1) การเคลื่อนย้ายมวลของสารประกอบอินทรีย์จากอากาศสู่พื้นผิวของตัวเร่ง ปฏิกิริยาไทเทเนียมไดออกไซด์

2) การดูดซับ (Adsorption) ของสารประกอบอินทรีย์ที่พื้นผิวของตัวเร่งปฏิกิริยา อัตราการดูดซับโมเลกุลของสารอินทรีย์บนพื้นผิวของตัวเร่งปฏิกิริยานี้สามารถ อธิบาย ใด้โดย Langmuir isotherm ดังสมการ

$$\theta = \frac{K[C]}{1+K[C]} \tag{2.15}$$

โดยที่

θ = อัตราส่วนสารอินทรีย์ที่ถูกดูคติคต่อปริมาณตัวเร่งปฏิกิริยา, mg/mg

K = ค่าคงที่ของการดูคติค, L/mg

[C] = ความเข้มข้นของสารอินทรีย์ที่จุดสมคุลของการดูดติด, mg/L

3) การเกิดปฏิกิริยาเกมีเนื่องจากการใช้แสงในตัวเร่งปฏิกิริยา (Photochemistry) หลังจากการดูดติดของสารอินทรีย์บนผิวของตัวเร่งปฏิกิริยาแล้ว จะเกิดปฏิกิริยาเกมี ขึ้นเมื่อมีการฉายแสงอัลตราไวโอเลต ถ้าอัตราการเกิดปฏิกิริยาเนื่องมาจากการสลายตัวของสารอินทรีย์ ซึ่งเป็นไปตามปฏิกิริยาลำดับที่หนึ่ง (First Order Reaction) จะมีรูปแบบดังต่อไปนี้

$$r = -\frac{dc}{dt} = k_{1st}C$$
(2.16)

โดยที่

r = อัตราการย่อยสลายโฟโตคะตะลิติก, mg/L.min
 k₁ = ค่าคงที่ของการเกิดปฏิกิริยาลำดับที่ 1, 1/min
 C = ความเข้มข้นของสารอินทรีย์ที่เวลาใดๆ, mg/L

อัตราการเกิดปฏิกิริยาโฟโตคะตะลิติกสำหรับความเข้มข้นเริ่มต้นของสารอินทรีย์ ต่างๆ หาได้จากความเข้มข้นของสารอินทรีย์ที่ย่อยสลายไปต่อเวลา ดังสมการ 2.14 และสามารถจัดรูป ใหม่ได้เป็นดังสมการ 2.15 ข้างล่างนี้ โดยที่เมื่อพล็อตกราฟความสัมพันธ์ระหว่างค่า In (C0/C) กับ เวลา ก่า k1 สามารถหาได้จากความชันของเส้นกราฟ

$$\ln\left(\frac{C_0}{C}\right) = k_1 t \tag{2.17}$$

โดยที่

 C_o = ความเข้มข้นเริ่มต้นของสารอินทรีย์, mg/L

k₁ = ค่าคงที่ของการเกิดปฏิกิริยาลำดับที่ 1, /min

C = ความเข้มข้นของสารอินทรีย์ที่เวลาใคๆ, mg/L

t = เวลา, min

เนื่องจากอัตราการเกิดปฏิกิริยาขึ้นอยู่กับสารอินทรีย์ที่ถูกดูดติดอยู่บนสารกึ่งตัวนำ ซึ่งเป็นไปตาม Langmuir - Hinshelwood Model (L-H Model) ดังนั้นอัตราการเกิดปฏิกิริยาเป็นไปตาม ดังสมการต่อไปนี้

$$r = \theta k = \frac{kKC}{1+KC}$$
(2.18)

โดยที่

r = อัตราการเกิดปฏิกิริยา, mol/L·min

k = ค่าคงที่ของการเกิดปฏิกิริยา, 1/min

K = ค่าคงที่ของการดูดติด, L/mg

C = ความเข้มข้นของสารอินทรีย์ที่จุดสมคุลของการดูดติด, mol/L

จัดรูปสมการใหม่เป็นคังสมการ 2.17 และเมื่อพล็อตกราฟความสัมพันธ์ระหว่าง 1/r และ 1/C จะได้กราฟเส้นตรงโดยที่จุดตัดแกน y คือ 1/k และความชันของเส้นกราฟ คือ 1/kK

$$\frac{1}{r} = \frac{1}{k} + \frac{1}{kKC}$$
 (2.19)

จากสมการ 2.16 สามารถจัครูปได้หลายแบบขึ้นอยู่กับค่า k, K และ C เมื่อความ เข้มข้นของสารอินทรีย์ต่ำๆ จนทำให้ *KC* << 1 อัตราการเกิดปฏิกิริยาจะเข้าใกล้รูปแบบปฏิกิริยาลำดับ ที่หนึ่ง คือ

$$r = k_1 K C = k_1' C \tag{2.20}$$

ในทำนองเดียวกันเมื่อความเข้มข้นของสารอินทรีย์มากๆ จนทำให้ KC>> 1 จะทำ ให้อัตราการเกิดปฏิกิริยาเข้าใกล้รูปแบบของปฏิกิริยาลำคับที่ศูนย์ (Zero - order reaction) คือ

$$r = k_0 \tag{2.21}$$
4) การหลุดออกของผลิตภัณฑ์จากพื้นผิวของตัวเร่งปฏิกิริยา

- การเกลื่อนย้ายมวลของผลิตภัณฑ์จากพื้นผิวของตัวเร่งปฏิกิริยา
- โดยทั่วไปแล้วในการศึกษาการเกิดปฏิกิริยาโฟโตคะตะลิติก จะมุ่งเน้นศึกษากลไก

ในขั้นตอน 1, 2 และ 3 เป็นส่วนใหญ่

จากผลการศึกษา [34] ได้นำกระบวนการโฟโตคะตะลิติกมาใช้บำบัดน้ำชะมูลฝอย พบว่า หลังจากการบำบัดน้ำชะมูลฝอยมีสารปนเปื้อนที่หลงเหลือแสดงดังตารางที่ 2.6

Identified	Identified
Tributylphosphate acid	Butanamine
Diethyl phthalic acid	Benzoic acid
Dibutyl benzene dicarboxylic acid	2.6-Dimethoxyphenol
Heneicosane	n-Heptacosane
n-docosane	Acetamide
n-Eicosane	Hexadecanoic acid
n-Tetracosane	Pyrimidine
n-Pentacosane	

ตารางที่ 2.6 สารปนเปื้อนหลังจากการบำบัดด้วยกระบวนการโฟโตกะตะลิติกของน้ำชะมูลฝอย [24]

2.3 ทฤษฏิโซล-เจล (Sol-gel)

กระบวนการ โซล-เจล เป็นวิธีการที่ใช้เตรียมสารละลายในการสร้างวัสดุจำพวกเซรามิค และแก้ว หลักการพื้นฐานของกระบวนการ คือ สารที่นำมาใช้ในการเตรียมการเคลือบจะเป็น สารละลายของสารประกอบโลหะหรือสารแขวนลอยที่มีขนาดอนุภาคเล็กๆ ในของเหลว และจะ เปลี่ยนสถานะจากของเหลว (Sol) เป็นสถานะกึ่งของแข็งที่เรียกว่า เจล (Gel) โดยการคึงออกหรือการ เพิ่มอุณหภูมิ หลังจากนั้นนำไปผ่านความร้อนที่อุณหภูมิที่เหมาะสมจะได้เป็นผลิตภัณฑ์ที่ต้องการซึ่งมี อนุภาคขนาดเล็กมาก (ประมาณ 1-1,000 nm) ดังขั้นตอนที่แสดงดังรูปที่ 2.7

คัดแปลงมาจาก [25]

ปฏิกิริยาที่สำคัญในกระบวนการ โซลเจลมี 3 ปฏิกิริยาคือ Hydrolysis, Water condensation และ Alcohol condensation ดังสมการ 2.22 – 2.24 ปัจจัยสำคัญที่มีผลต่ออัตราการเกิดปฏิกิริยา คือ ค่า pH ตัวเร่งปฏิกิริยา อัตราส่วนโมลของน้ำ, โลหะ และอุณหภูมิ ดังนั้นการควบคุมปัจจัยเหล่านี้ใน สภาวะที่ต่างกันจะทำให้โซลและเจลที่ได้มีสมบัติและโครงสร้างต่างกัน [26]

Hydrolysis :	$M-O-R+H_2O$	>	M-OH + R-OH	(2.22)
Water condensation :	M-OH + HO-M		$M-O-M+H_2O$	(2.23)
Alcohol condensation :	M-O-R + HO-M		M-O-M+R-OH	(2.24)

โดยที่

M = โลหะ เช่น Si, Zr, Al, Sn, และ Ce เป็นต้น OR = Alkoxy

2.3.1 การเคลือบผิวด้วยวิธีโซล-เจล

วิธีการเคลือบผิวมี 2 แบบที่นิยมใช้กันโดยทั่วไป คือ การจุ่มเคลือบแบบกะ (Batch dip coating) และการจุ่มเคลือบแบบต่อเนื่อง (Continuous dip coating) การจุ่มเคลือบแบบกะสามารถ แบ่งขั้นตอนในขณะเคลือบได้ 5 ขั้นตอน แสดงดังรูปที่ 2.8 ดังนี้

ร**ูปที่ 2.8** ขั้นตอนการจุ่มเคลือบแบบกะ ดัดแปลงมาจาก [27]

- (1) ขั้นตอนการจุ่มชิ้นงาน (Immersion)
- (2) ขั้นตอนการเริ่มต้นดึงชิ้นงานขึ้น (Start up)
- (3) ขั้นตอนสารละลายเกาะติดผิวตัวกลางและเริ่มไหลย้อนกลับ (Deposition and

drainage)

(4) ขั้นตอนที่สารละลายไหลแยกออกจากชิ้นงาน (Drainage)

(5) ขั้นตอนที่สารละลายระเหย (Evaporation)

สำหรับตัวทำละลายที่ระเหยง่าย เช่น แอลกอฮอล์ ขั้นตอนการระเหยมักจะเกิดขึ้น พร้อมๆกับขั้นตอน (1) ถึง (3)

থ ব	9/ a
ขอด	้งอเลย
1. ได้โครงสร้างเอกพันธ์ (Homogeneity)	1. สารเคมีบางชนิด มีราคาสูง
2. ได้ผลิตภัณฑ์ที่มีความบริสุทธิ์สูง	2. เกิดการหดตัวมากในกระบวนการผลิต
3. ทำงานที่อุณหภูมิต่ำ	 เกิดช่องว่างขนาดเล็กในโครงสร้าง
4. ไม่เกิดปฏิกิริยาข้างเคียง	4. สารละลายอินทรีย์บางชนิดเป็นอันตราย
5. ได้ของแข็งอสัณฐานชนิดใหม่	5. ใช้เวลานาน
 ได้ของแข็งที่มีโครงสร้างผลึกชนิดใหม่ 	6. การก่อผลึกให้ได้โครงสร้างที่ต้องการ บางครั้ง
7. ได้เจลที่มีคุณสมบัติเฉพาะ	ต้องใช้อุณหภูมิสูง

ตารางที่ 2.7 ข้อคีและข้อเสียของการเคลือบด้วยเทคนิคโซล-เจล [27]

วิธีการเคลือบด้วยโซล-เจล นั้นการระเหยมักจะขึ้นอยู่กับการแข็งตัวของฟิล์มที่เคลือบ โดย ปัจจัยที่สำคัญที่สุดของอัตราการระเหย คือ อัตราการแพร่ของไอที่แพร่ออกจากผิวหน้าของฟิล์ม ซึ่งจะ ขึ้นอยู่กับการเคลื่อนที่ของก๊าซที่ชั้นขอบเขตบางๆ ที่อยู่ติดกับผิวหน้าของฟิล์ม เนื่องจากการพามวลที่ เกิดจากการเคลื่อนที่ของก๊าซเพียงเล็กน้อยก็สามารถทำให้การแพร่เพิ่มขึ้นได้อย่างมาก

2.4 การทดสอบลักษณะทางกายภาพของตัวเร่งปฏิกิริยา TiO $_2$

โดยทั่วไปการทดสอบคุณสมบัติของ TiO₂ ทำได้โดยการวิเคราะห์โครงสร้างผลึก คุณสมบัติทางกายภาพ ขนาด การกระจายตัว และพื้นผิวเฉพาะ ดังนี้

2.4.1 X-Ray Diffraction (XRD) [28]

โดยที่

X-Ray Diffraction เป็นการนำรังสีเอ็กซ์ มาใช้วิเคราะห์สารประกอบที่มีอยู่ในสาร ตัวอย่างและนำมาใช้ศึกษารายละเอียดเกี่ยวกับโครงสร้างผลึกของสารตัวอย่าง เทคนิค XRD ใช้ หลักการเลี้ยวเบนของรังสีเอ็กซ์ ที่ตกกระทบหน้าผลึกของสารตัวอย่างที่มุมต่างๆกัน เนื่องจากองศาใน การเลี้ยวเบนของรังสีเอ็กซ์จะขึ้นอยู่กับองค์ประกอบ และโครงสร้างของสารที่มีอยู่ในตัวอย่าง เมื่อลำ รังสีตกกระทบวัตถุ หรืออนุภาคอาจจะเกิดการหักเหของลำรังสี สะท้อนออกมาทำมุมกับระนาบของ อนุภาคเท่ากับมุมของลำรังสีตกกระทบ หรือที่เรียกว่า สมการของ Bragg ดังสมการที่ 2.25

$$2d \sin \theta = n\lambda$$
(2.25)
$$d = 5 \pm 0 \pm \dot{n} + \dot$$

n = 1,2,3,... ผลการวิเกราะห์ที่ได้จะถูกนำไปเปรียบเทียบกับฐานข้อมูลมาตรฐานที่จัดทำขึ้นโดย องก์กร JCPDs (Joint Committee on Powder Diffraction Standards) เพื่อระบุชนิดของสารประกอบที่ มีอยู่ในสารตัวอย่างและสามารถนำมาใช้ศึกษารายละเอียดเกี่ยวกับโกรงสร้างของผลึกของสารตัวอย่าง

้มอยู่เนสารตวอยางและสามารถนามา เชศกษารายละเอยคเกยวกบ เครงสรางของผลกของสารตวอยาง นั้นๆ ได้ นอกจากนี้ข้อมูลที่ได้ยังสามารถนำมาหาปริมาณของสารประกอบแต่ละชนิดในสารตัวอย่าง ปริมาณความเป็นผลึก ขนาดของผลึก ความสมบูรณ์ของผลึกและความหนาของผลึกได้

2.4.2 Atomic Force Microscopy (AFM)

การวิเคราะห์ลักษณะทางกายภาพและการกระจายตัวโดยอุปกรณ์ Atomic Force Microscope (AFM) [29-30] เป็นอุปกรณ์ที่ใช้งานทางด้านวิทยาศาสตร์ระดับนาโนโดยเฉพาะ เช่นเดียวกันกับเครื่อง Scanning Tunnelling Microscope (STM) ที่สามารถให้ภาพของพื้นผิวที่มีความ ละเอียดในระดับอะตอมได้ โดยหลักการทำงานโดยสังเขป คือ การใช้ปลายเข็มเล็กๆ สแกนไปบน พื้นผิวของแผ่นตัวอย่างโดยอาศัยการวัดกระแสไฟฟ้าที่อยู่บนพื้นผิวที่ทะลุผ่านมาที่ปลายเข็มตาม ปรากฏการณ์ทางควอนตัมฟิสิกส์ เพื่อแปรไปเป็นค่าความสูงต่ำของพื้นผิว เมื่อสแกนเข็มไปทีละจุด จนทั่วพื้นที่ที่ต้องการวัด ข้อมูลที่ได้จะเป็น ตำแหน่ง x, y และ z ซึ่งสามารถนำไปแสดงเป็นภาพสาม มิติได้ สำหรับเครื่อง AFM ถูกพัฒนาขึ้นมาหลังจากเครื่อง STM และสร้างขึ้นมาด้วยหลักการพื้นฐาน เดียวกันกับเครื่อง STM โดยเครื่อง AFM จะสามารถทำงานได้โดยการใช้อุปกรณ์ตรวจ (Probe) ที่มี ปลายแหลมเล็ก ซึ่งติดอยู่กับคานยื่น (Cantilever) ที่สามารถโก่งงอตัวได้เคลื่อนที่สัมผัสไปบนพื้นผิว ของวัตถุ ซึ่งสามารถที่จะวัดแรงกระทำที่ปลายแหลมของอุปกรณ์ตรวจได้แม้ว่าจะมีขนาดน้อยมากใน ระดับนาโน อุปกรณ์ดังกล่าวสามารถตรวจวัดพื้นผิวที่เป็นฉนวนไฟฟ้าได้ เช่น พื้นผิวโพลีเมอร์, เซรา มิกส์, คอมโพสิท, กระจกหรือแก้ว และโมเลกุลทางชีวภาพต่างๆ เป็นต้น

หลักการทำงานของเครื่อง AFM [31] การผ่านแสงเลเซอร์ไปให้กับส่วนปลายแหลม (tip) ของคานยื่นที่มีขนาดระดับอะตอมในระยะใกล้ ซึ่งส่วนปลายแหลมของคานนั้นจะไปสัมผัสแบบ กระดกในทิสทางขึ้นและลงกับพื้นผิวของวัตถุ และเมื่อเครื่อง AFM ลากส่วนปลายแหลมผ่าน โครงสร้างระดับนาโน แรงปฏิกิริยาที่กระทำในแนวตั้งฉากที่เกิดขึ้นระหว่างอะตอมของพื้นผิวกับ ปลายแหลมจะดึงคาน ทำให้คานโก่งงอตัวทำให้สามารถตรวจวัดขนาดของแรงเชิงปฏิสัมพันธ์ ระหว่างความสัมพันธ์เชิงตำแหน่งของส่วนปลายแหลมและพื้นผิวของวัตถุ (ทำให้สามารถทราบถึง ระดับพลังงานที่เกิดขึ้นได้) ซึ่งจะถูกนำมาแปรสัญญาณร่วมกันเพื่อนำมาสร้างเป็นภาพพื้นผิวที่เป็น ลักษณะเชิงโครงสร้างระดับอะตอมที่มีกำลังการขยายสูงไปแสดงบนจอรูปที่เป็นมอนิเตอร์ เช่นเดียวกันกับเครื่อง STM (และโดยหลักการเดียวกันนี้กีสามารถที่ใช้ปลายแหลมของคานนี้ในการ สร้างแรงผลัก เพื่อเคลื่อนย้ายอะตอมแต่ละตัวของโลรงสร้างวัสดุได้เช่นเดียวกันอีกด้วย)

วิธีการทำงานของเครื่อง AFM ที่นำมาใช้งานทางด้านวิทยาศาสตร์ระดับนาโน สามารถแบ่งออกได้เป็น 2 วิธี ได้แก่

 เป็นการสัมผัสพื้นผิวพร้อมกับการถากปลายแหลมไปบนพื้นผิวนั้นๆ ตลอดเวลา ข้อเสียของวิธีนี้ คือ จะทำให้เกิดแรงด้านในแนวของการเคลื่อนที่ซึ่งขนานกับพื้นผิวขึ้น อันอาจทำให้ กานของโพรบที่ใช้วัดเกิดการโก่งงอตัวหรือเกิดบิดเบี้ยวไป โดยที่มิได้เกิดจากแรงดึงดูดที่ปลาย เนื่องจากแรงในแนวตั้งฉากเพียงอย่างเดียว จึงทำให้ข้อมูลความสูงของพื้นผิวที่วัดได้นั้นอาจผิดไปจาก ความสูงที่แท้จริง

 เป็นการสัมผัสพื้นผิวโดยให้ปลายแหลมสัมผัสกับพื้นผิวเป็นระยะเวลาสั้นๆใน แนวตั้งฉากกับพื้นผิว (คล้ายกับการใช้ปลายนิ้วเคาะโต๊ะเป็นจังหวะ) ด้วยลักษณะการสัมผัสแบบนี้แรง ด้านในแนวตั้งฉากจะไม่เกิดขึ้น แต่เนื่องจากปลายแหลมสัมผัสพื้นผิวเป็นระยะสั้นๆ จึงทำให้เกิดการ สั่นของกาน ซึ่งจะส่งผลให้ก่าสัญญาณที่ตรวจวัดได้นั้นไม่กงที่หรือไม่แม่นยำได้

ลักษณะชิ้นงานที่ใช้ในการทดสอบ ได้แก่ แผ่นฟิล์มบาง, คอลลอยด์, อนุภาคนาโน ในเครื่องสำอาง, เซลล์แบคทีเรีย, ชิ้นงานที่เป็นผงระดับนาโน โดยมีขนาดชิ้นงานไม่เกิน 2 2 cm หนา ไม่เกิน 1 cm ความขรุขระไม่เกิน 4 µm และขนาดภาพสแกนใหญ่ไม่เกิน 100×100×4 cm (กว้าง × ยาว × สูง) โดยสามารถบอกความสูง-ต่ำของพื้นผิวในรูปแบบ 2 มิติ หรือ 3 มิติ โดยโปรแกรม Gwyddion

โดย Gwyddion เป็น โปรแกรมสำหรับแสดงข้อมูลจากรูปที่ถ่ายด้วยอุปกรณ์ Scanning Probe Microscopy (SPM) ซึ่งเป็นกลุ่มของเครื่องมือทางเทคนิคที่ถูกนำเพื่อใช้งานทางด้าน วิทยาศาสตร์ระดับนาโนโดยเฉพาะ โดยเครื่องมือกลุ่ม SPM นี้นำมาใช้งานเพื่อตรวจวัดคุณสมบัติด้าน ต่างๆ ของโครงสร้าง

ส่วนใหญ่ใช้สำหรับวิเคราะห์ของข้อมูลภาพจากกล้องจุลทรรศน์ ดังนี้ AFM, MFM, STM, และ SNOM/NSOM เป็นต้น โปรแกรมจะแสดงข้อมูลรายละเอียดพิ้นผิวหรือความหนาของ วัสดุที่ทำการวิเคราะห์ จะได้ภาพเป็น 2 และ 3 มิติ [32]

2.4.3 UV-Vis Spectroscopy

การวิเคราะห์หาขนาดความกว้างของแถบพลังงานโดยอุปกรณ์ UV-Vis spectrometer spectrophotometer [33] เป็นอุปกรณ์ที่ใช้ในวิเคราะห์สารโดยอาศัยหลักการดูดกลืนรังสี ของสารที่อยู่ในช่วง Ultraviolet (UV) และ Visible (VIS) ช่วงความยาวคลื่นประมาณ 190-1000 นาโน เมตร (nm) ของสารเคมีนั้น ได้แก่ สารอินทรีย์ (Organic compound), สารประกอบเชิงซ้อน (Complex compound), หรือสารอนินทรีย์ (Inorganic compound) โดยนำสารตัวอย่างใส่ในเซลล์ควอร์ต (Quartz) แล้ววางในบริเวณใกล้แหล่งกำเนิดแสง สารตัวอย่างจะดูดกลืนรังสีในช่วงความยาวคลื่นที่แตกต่างกัน และปริมาณการดูดกลืนรังสีก็ขึ้นอยู่กับความเข้มของสารนั้น การดูดกลืนแสงของสารต่างๆ เป็น สัดส่วนโดยตรงกับความเข้มข้นของสาร จึงสามารถวิเคราะห์ได้ในเชิงคุณภาพและปริมาณ เป็น เทคนิคที่ให้สภาพไวที่ดี และใช้กันอย่างแพร่หลาย ผลที่ได้จากการวิเคราะห์ด้วยเทคนิคนี้จะแสดง ความสัมพันธ์ระหว่างก่าการดูดกลืนแสง (Absorbance) และค่าความยาวคลื่น (Wavelength) ซึ่ง เรียกว่า Spectrum

2.5 งานวิจัยที่เกี่ยวข้อง

อธิวัฒน์ พรหมจันทร์ [34] ศึกษาสมบัติของวัสดุโครงสร้างนาโนที่มีส่วนประกอบของ ใทเทเนียมใดออกไซด์และซิลิกอนใดออกไซด์ด้วยวิธีไฮโดรเทอร์มอล ข้อมูลจากเทคนิค XRD พบว่า วัสดุมีโครงสร้างผลึกใหม่ของไทเทเนียมใดออกไซด์กับซิลิกอนใดออกไซด์ ข้อมูลจากเทคนิค XRF พบว่าสารตัวอย่างประกอบด้วยไทเทเนียมใดออกไซด์ 50.23-59.28 %โดยน้ำหนัก ซิลิกอนใดออกไซด์ 38.62-46.74 %โดยน้ำหนัก ภาพจากเทคนิค SEM พบว่ามีวัตถุรูปทรงรีขนาด ประมาณ 1 µm และมีอนุภาคขนาดเล็กเกาะที่ผิวของอนุภาคทรงรี เมื่อนำวัสดุผสมมาศึกษาสมบัติทาง แสงถูกทดสอบด้วยเทคนิค UV-visible พบว่าฟิล์มบางของวัสดุโครงสร้างนาโนมีค่าการดูดกลืนคลื่น แสงในช่วงความยาวคลื่น 230-268 nm เมื่อนำมาคำนวณหาพลังงานแถบช่องว่างพบว่ามีค่า 3.565-3.602 eV

S. Wang และคณะ [35] ได้ทำศึกษาคุณสมบัติผลึกชนิดอนาเทส และรูไทล์ของ Fedoped TiO₂ แบบผงโดยเทคนิคโซล-เจลบำบัคสี Methyl Orange (MO) ความเข้มข้น 20 mg/L ภายใต้ การฉายแสงที่ความยาวคลื่น 350-450 nm พบว่า TiO₂ แบบผงชนิดมีปผลึกรูไทล์ 28.76% เผาที่ 550 °C มีประสิทธิภาพการบำบัคสี MO มากที่สุด และ Fe-doped TiO₂ 0.1 at% (Fe^{3+/}Ti⁴⁺) แบบผงผลึกชนิดอ นาเทส 79.36 % ผสมแบบผลึกชนิดรูไทล์ 20.64 % มีประสิทธิภาพในการบำบัคสี MOได้มากเช่นกัน

Andreina Gariia และ Juan Matos [36] ศึกษาการย่อยสลายฟืนอลโดยกระบวนการโฟโต กะตะลิติกด้วยการใช้ไทเทเนียมไดออกไซด์ร่วมกับแสงอัตราไวโอเล็ตช่วงที่มองเห็นได้ และถ่านกัม มันต์ที่เตรียม โดยวิธีการกระตุ้นทางกายภาพ ผลการศึกษาการสลายของฟืนอล โดยใช้ไทเทเนียมได ออกไซด์ และถ่านกัมมันต์ มีอัตราเพิ่มขึ้นในช่วงแรกอย่างชัดเจน และเมื่อได้ศึกษาจลนพลศาสตร์ของ ปฏิกิริยา การย่อยสลายฟืนอลเมื่อใช้ตัวเร่งปฏิกิริยาถ่านกัมมันต์ชุบไทเทเนียมไดออกไซด์ พบว่า ปฏิกิริยา การย่อยสลายฟืนอลเมื่อใช้ตัวเร่งปฏิกิริยาถ่านกัมมันต์ชุบไทเทเนียมไดออกไซด์ พบว่า ปฏิกิริยาที่เกิดขึ้นเป็น ปฏิกิริยาอันดับหนึ่ง โดยมีก่าดงปฏิกิริยา เท่ากับ 3 x 10⁻³ 1/min นอกจากนี้เมื่อ นำมาเปรียบเทียบระหว่างการใช้ TiO₂ อย่างเดียว พบว่า การใช้วัสดุทั้ง 2 อย่าง ที่ได้กล่าวมาข้างด้น มี ประสิทธิรูปที่ดีกว่า เนื่องถ่านกัมมันต์มีพื้นที่ผิวสูง และสามารถเป็นตัวเก็บอิเล็กตรอนไว้ เพื่อยับยั้ง การกลับมารวมตัวใหม่ระหว่างอิเล็กตรอนกับโฮล ซึ่งจะช่วยเพิ่มประสิทธิภาพของกระบวนการโฟโต กะตะลิติกที่มีไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา Guido Del Moro และคณะ [37] ศึกษาการประยุกต์ใช้การบำบัดทางชีวภาพร่วมกับการเกิด ออกซิเดชันเป็นกระบวนการทางเคมีในน้ำชะมูลฝอย โดยจะเป็นการบำบัดทางชีวภาพก่อนและตาม ด้วย UV / H₂O₂ ซึ่งเป็นกระบวนการออกซิเดชันขั้นสูง (AOP) ผลการศึกษาพบว่าประสิทธิภาพการ ทำงานที่ดีขึ้น และมีประสิทธิภาพการกำจัดสูงกว่า 80% เนื่องจากมีการใช้กระบวนการออกซิเดชันขั้น สูงเข้ามารวมในการบำบัดต่อจากการบำบัดทางชีวภาพ ซึ่งช่วยกำจัดสารปนเปื้อนต่างๆที่กระบวนทาง ชีวภาพไม่สามารถกำจัดได้

R. Poblete และคณะ [38] งานนี้ได้ศึกษาประสิทธิผลของวิธีการรักษาสำหรับการย่อยสลาย ของน้ำชะขยะของกระบวนการออกซิเดชันงั้นสูง ขั้นตอนประกอบด้วยการบำบัดภายใด้รังสียูวีที่ ความยาวคลื่น 365 นาโนเมตรโดยใช้ตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่ได้จาก กระบวนการผลิต ในโรงงานอุสาหกรรม (WTiO₂) ซึ่งมีทั้ง TiO₂ และ Fe (III) เมื่อเทียบกับไทเทเนียมไดออกไซด์ที่ผลิต ขายในท้องตลาด (CTiO₂) ถูกนำใช้ในการวิเคราะห์อิทธิพลของปัจจัยสำคัญที่ส่งผลกระทบต่ออัตรา การย่อยสลาย เช่น ชนิดของตัวเร่งปฏิกิริยา, ชนิดของสารออกซิไดซ์, โหลดตัวเร่งปฏิกิริยา, เวลา ปฏิกิริยา และค่า pH นอกจากนี้ได้ทำการศึกษาสารบางอย่างที่เป็นส่วนประกอบในน้ำชะขยะเช่น P-Cresol และกรดฮิวมิก ผลการศึกษาแสดงให้เห็นว่างานวิจัยนี้ การออกแบบปัจจัยที่ใช้ในการกำหนด ปัจจัยหลักที่มีผลต่อกระบวนการย่อยสลาย พบว่า ประเภทของสารประกอบ และชนิดของตัวเร่ง ปฏิกิริยาเป็นปัจจัยที่สำคัญมากกว่าโหลดตัวเร่งปฏิกิริยา, เวลาปฏิกิริยาหรือก่า pH และ พบว่า WTiO₂ เป็นตัวแทนดัวเร่งปฏิกิริยาในกระบวนการออกซิเดชั่งนี้สูง ตัวเร่งปฏิกิริยานี้แสดงให้เห็นว่าร้อยละที่ เพิ่มขึ้นของการกำจัดสารอินทรีย์และกิจกรรมจึงเพิ่มสูงขึ้นมากในการย่อยสลายน้ำชะขยะภายใด้แสง ฉายรังสี UV มากกว่า CTiO₂ เนื่องจาก WTiO₂ มี Fe เป็นส่วนประกอบด้วยซึ่งอาจจะเกิดปฏิกิริยา ร่วมกับไทเทเนียมไดออกไซด์ส่งผลให้มีประสิทธิรูปที่ดีกว่า ตัวเร่งปฏิกิริยา CTiO₂

Daniel E. Meeroff และคณะ [39] งานวิจัยนี้ได้ศึกษาเปรียบเทียบประสิทธิภาพการบำบัด น้ำชะมูลฝอยของ 2 กระบวนการ คือ Photochemical iron-mediated aeration (PIMA) และ Photocatalysis ผลการศึกษา พบว่า กระบวนการ PIMA แสดงให้เห็นว่ามีแนวโน้มสำหรับ PIMA ถูก นำไปใช้กับน้ำชะจริงเป็นกระบวนการที่พบในการกำจัดตะกั่วและสีได้อย่างมีประสิทธิภาพ (> 90%) ในขณะที่ COD และBOD มีประสิทธิภาพน้อย (<50%) ใน 16-24 ชั่วโมง นอกจากนี้ยังพบว่า กระบวนการ PIMA อาจจะสามารถกำจัดแอมโมเนียที่มีการปรับค่า pH ลงในช่วงค่าง (pH> 10) ส่วน กระบวนการ โฟโตกะตะลิติกในการบำบัดน้ำชะมูลฝอย พบว่า สามารถกำจัดแอมโมเนียได้ถึง 71% โดยไม่ต้องปรับก่า pH และถึงการกำจัดสี 90% ในระยะระหว่างวันที่ 4-6 ชั่วโมง ซึ่งกระบวนการ โฟ โตกะตะลิติกสามารถบำบัดน้ำชะมูลฝอยได้มีประสิทธิรูปที่ดีว่า PIMA และใช้ระยะเวลาที่น้อยกว่าอีก ด้วย

Orawan Rojviroon และคณะ [40] งานวิจัยนี้ได้นำเสนอวิธีการเตรียมสารด้วยเทคนิคโซล เจล สำหรับเคลือบผิวตัวเร่งปฏิกิริยา (AC / TiO₂) หลังจากนั้นทำการวิเคราะห์เพื่อตรวจสอบคุณสมบัติ ของพื้นผิวตัวเร่งปฏิกิริยา AC / TiO₂ คือ Scanning electron microscopy (SEM), X-ray diffraction (XRD) และ Brunauer Emmett Teller (BET) ผลการวิเคราะห์พบว่าอนุภาค TiO₂ เคลือบบนพื้นผิว AC เป็นผลึกอนาเทส พื้นผิวปริมาตรรูพรุนและขนาดรูขรุขระของตัวเร่งปฏิกิริยา AC / TiO₂ ลดลง ใน ความสัมพันธ์ของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซค์เคลือบผิวบน AC ได้นำมากำจัดสี และ COD ในน้ำชะขยะจากหลุมฝังกลบ ภายใต้การฉายรังสี UVA ในความเข้มแสงที่แตกต่างกัน จากการทดลอง พบว่า การเคลือบลงบน TiO₂ลงบน AC สามารถเพิ่มประสิทธิภาพในการกำจัค COD และที่การฉาย แสง UVA ในความเข้มแสงที่เพิ่มขึ้นได้ประสิทธิรูปที่ดีที่สุด ทำให้ AC / TiO₂ เหมาะสมต่อ กระบวนการบำบัดนี้

M.N. Vineetha และคณะ [41] ได้การศึกษาการกำจัดของสีและการกำจัด COD น้ำทิ้งจาก โรงกลั่น ภายใต้รังสีจากแสงอาทิตย์ อิทธิพลของพารามิเตอร์การทดลอง เช่น ปริมาณความเข้มข้นของ H_2O_2 ความเข้มข้น COD ของน้ำทิ้ง, ตัวเร่งปฏิกิริยา TiO₂ และค่า pH ผ่านกระบวน โฟโตคะตะลิติก จากผลการศึกษา พบว่า ประสิทธิภาพการกำจัดสีสูงสุดของน้ำทิ้งจาก โรงกลั่นที่ยู่ที่ 79% ที่ความ เข้มข้นของ H_2O_2 เท่ากับ 0.3 M, pH เท่ากับ 6 ความ, COD ของน้ำทิ้งเท่ากับ 500 ppm และตัวเร่ง ปฏิกิริยา TiO₂ปริมาณ 0.1 g/L ระบบ TiO₂/ H_2O_2 พบว่า มีประสิทธิภาพมากขึ้นเมื่อใช้ H_2O_2 และ TiO₂ กระบวนการย่อยสลายออกไซค์ใช้แสงพลังงานแสงอาทิตย์เป็นแหล่งการฉายรังสี แสดงให้เห็น ว่า กระบวนการที่มีศักยภาพสำหรับ การกำจัดสีของน้ำเสียโรงกลั่น รังสีจากควงอาทิตย์สามารถเป็น ทางเลือกอีกหนึ่งทางเลือกที่มีประสิทธิภาพสำหรับการรักษาน้ำทิ้งอุตสาหกรรม

บทที่ 3 วิธีดำเนินการวิจัย

การศึกษาวิจัยครั้งนี้เพื่อศึกษาความสามารถและประสิทธิภาพในการกำจัด COD รวมถึง ติดตามการเปลี่ยนแปลง BOD, กับ VFA ในน้ำชะมูลฝอยจากหลุมฝังกลบเก่า ด้วยกระบวนการโฟโต กะตะลิติกร่วมกับใช้ตัวเร่งปฏิกิริยา TiO₂ ที่ใช้แหล่งกำเนิดแสง UV-A ความเข้มแสง 1,000 μW/cm² โดยมีขั้นตอนการศึกษาต่อไปนี้

3.1. เครื่องมือและอุปกรณ์

3.1.1 ถังปฏิกรณ์สำหรับกระบวนการโฟโตคะตะลิติก คังรูปที่ 3.1

รูปที่ 3.1 ถังปฏิกรณ์สำหรับกระบวนการโฟโตคะตะลิติก

3.1.2 อุปกรณ์ชุบเคลือบผิวตัวเร่งปฏิกิริยา ดังรูปที่ 3.2

- 1) สารเคลือบผิว
- 2) วาล้วทางออกก๊าซ N_2
- 3) วาล์วทางเข้าก๊าซ N_2
- ถังก๊าซ N₂
- 5) ตู้ชุบเคลือบผิว

รูปที่ 3.2 อุปกรณ์ชุบเคลือบผิวตัวเร่งปฏิกิริยา

- 3.1.3 สารเคมีที่ใช้ในการศึกษา
 - 1) ใทเทเนียมเตตระ โพรพรอกไซด์ (Ti (OCH(CH₃)₂)₄) AR Grade
 - 2) ใอโซโพรพานอล (CH₃)₂CHOH) AR Grade
 - 3) กรคไฮโครคลอริก (HCl) AR Grade
 - 4) สารละลายมาตรฐานโปตัสเซียมใดโครเมต 0.1 N AR Grade
 - 5) สารละลายกรคซัลฟิวริก AR Grade
 - สารละลายเฟอร์ โรอิน อินดิเคเตอร์
 - 7) สารละลายมาตรฐานเฟอร์รัสแอม โมเนียมซัลเฟต 0.05 N AR Grade
 - 8) สารละลายแมงกานีสซัลเฟต AR Grade
 - 9) สารถะถายอัลคาไล-ไอโอไคค์-เอไซค์ AR Grade
 - 10) สารละลายโซเดียมไธเดียมไรโอซัลเฟต 0.025 N AR Grade
 - 11) น้ำแป้ง
 - 12) สารละลายฟอสเฟตบัฟไฟอร์ AR Grade
 - 13) สารละลายแมกนี้เซียมซัลเฟต AR Grade
 - 14) สารละลายเฟอร์ริกคลอไรด์ AR Grade
 - 15) สารละลายแคลเซียมคลอไรด์ AR Grade

3.1.4 เครื่องมือและอุปกรณ์สำหรับงานวิเคราะห์ในห้องปฏิบัติการ

- 1) เตาอบ (Oven)
- ตู้อบ ควบคุมอุณหภูมิที่ 105 °C
- เครื่องกวนแม่เหล็กไฟฟ้า (Magnetic stirrer) และ แท่งกวนแม่เหล็กไฟฟ้า (Magnetic bar)
- 4) ตู้ควบคุมอุณหภูมิ (Incubator)
- 5) อุปกรณ์เติมอากาศ
- 6) หลอดย่อยขนาด 20×150 mm
- 7) ขวด BOD ขนาด 300 mL
- 8) เครื่องชั่งน้ำหนัก ทศนิยม 4 ตำแหน่ง
- 9) ขวดน้ำสำหรับฉีดล้าง (Washing bottle)
- 10) ขวดปรับปริมาตร (Volumetric flask) ขนาด 50, 100, 250 และ 1,000 mL

- 11) ปีกเกอร์ (Beaker) ขนาด 25, 100, 250 และ 1,000 mL
- 12) ขวดรูปชมพู่ (Erlenmeyer flask) ขนาด 250 mL
- 13) บิวเรต (Burette) ขนาด 50 mL
- 14) กระบอกตวง (Graduate cylinder) ขนาด 100 และ 1,000 mL
- 15) นาฬิกาจับเวลา
- 16) อุปกรณ์วัดความเข้มแสง UV-Light Meter Model UV-340
- 17) หลอดอัตราไวโอเลต ยี่ห้อ OSRAM ขนาด 300 W
- 18) Petri dish ขนาด 15×90 mm
- 19) ปีเปตอัตโนมัติ ยี่ห้อ Engineered for Excellence BIOHIT
- 20) เครื่องวิเคราะห์ X-ray Diffractometer
- 21) เครื่องวิเคราะห์ UV-Vis spectrometer
- 22) เครื่องวิเคราะห์ Atomic Force Microscopy
- 23) โปรแกรม Gwyddion Software

3.2 ขั้นตอนการดำเนินงาน

รูปที่ 3.3 ขั้นตอนการคำเนินงานในการศึกษาการบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่า

3.3 ศึกษาลักษณะสมบัติของน้ำชะมูลฝอยจากหลุมฝังกลบเก่า

น้ำชะมูลฝอยที่นำมาใช้ในการศึกษานี้ได้มาจากพื้นที่หลุมฝังกลบขยะขององค์การบริหารส่วน จังหวัดนนทบุรี ตำบลคลองขวาง อำเภอไทรน้อย จังหวัดนนทบุรี ซึ่งเป็นน้ำชะมูลฝอยจากหลุมฝังกลบเก่า โดยวิเคราะห์ลักษณะสมบัติของน้ำชะมูลฝอยคังพารามิเตอร์ที่แสคงในตารางที่ 3.1

พารามิ	ີມເຕອຮ໌	หน่วย	วิธีการวิเคราะห์
COD		mg/L	Close reflux, Titrimetric method
BOD_5		mg/L	5 Days incubation 1182 Azide modification
VFA	mg	/L as CaCO ₃	Titrimetric method
рН			pH meter

ตารางที่ 3.1 พารามิเตอร์และวิธีการวิเคราะห์ลักษณะสมบัติของน้ำชะมูลฝอย

3.4 การเตรียมตัวเร่งปฏิกิริยา TiO $_2$

สามารถเตรียมด้วยการใช้ไทเทเนียมเตตระ โพรพรอกไซด์ (Ti [OCH(CH₃)₂]₄ TTIP) เป็น สารตั้งต้นในตัวทำละลายไอโซโพรพานอล (CH₃)₂CHOH) ที่อุณหภูมิห้อง ดังนี้

 ทำการผสมสารตั้งต้น TTIP ต่อตัวทำละลายไอโซโพรพานอล ในอัตราส่วนโดย ปริมาตร 1:15 พร้อมทั้งทำให้การกวนแบบปั่นป่วนที่อุณหภูมิห้อง

ปรับพีเอชของสารละลายให้มีค่าเท่ากับ 2-3 ด้วยกรดไฮโดรคลอริกเข้มข้น

กวนสารละลายเป็นเวลา 1 ชั่วโมง และเก็บทิ้งไว้เป็นเวลา 24 ชั่วโมง

นำสารละลายมาทำการจุ่มเคลือบแบบกะ ซึ่งตัวกลางคือ Petri dish เพื่อใช้เป็นถังปฏิกรณ์ ในการบำบัดน้ำเสีย ขณะเคลือบผิวจะทำการไล่อากาศด้วยก๊าซไนโตรเจน โดยใช้อัตราเร็วในการจุ่ม เคลือบเท่ากับ 9 mm/min โดยทำการจุ่มเคลือบเป็นจำนวน 3, 4 และ 5 ชั้น รายละเอียดในการจุ่มเคลือบ บนตัวกลาง Petri dish แสดงในรูปที่ 3.4

รูปที่ 3.4 แผนผังแสดงขั้นตอนการเกลือบ Petri dish

จำนวนการ		อุณห	เภูมิในแต่ละชั้ น	1 (°C)	
ชุบเคลือบ	1 ชั้น	2 ชั้น	3 ชั้น	4 ชั้น	5 ชั้น
3	100	200	500	-	-
4	100	200	350	500	-
5	100	200	250	350	500

ตารางที่ 3.2 อุณหภูมิในการเคลือบตัวเร่งปฏิกิริยาTiO₂บนผิวตัวกลาง

3.5 การวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา

3.5.1 วิเคราะห์โครงสร้างของตัวเร่งปฏิกิริยา Ti ${
m O_2}$

การวิเคราะห์โครงสร้างของตัวเร่งปฏิกิริยา TiO₂ จะศึกษาเกี่ยวกับโครงสร้างของ ผลึก (Crystal Structure) การจัดเรียงตัวของอะตอมโมเลกุลของสารประกอบต่างๆ ทั้งในเชิงคุณภาพ และเชิงปริมาณ ซึ่งสามารถระบุชนิดและอัตราส่วนของผลึก TiO₂ ในรูปของอนาเทสต่อรูไทล์ โดยใช้ ผงของตัวเร่งปฏิกิริยา TiO₂ ที่เตรียมโดยใช้สารละลายด้วยเทคนิคโซล-เจล ตามวิธีการในข้อที่ 3.4 ตามลำดับ นำสารละลายดังกล่าวผ่านการอบที่อุณหภูมิ 500 °C เป็นเวลา 1 hr และนำผงดังกล่าว วิเคราะห์ด้วยอุปกรณ์ X-ray diffraction (XRD) 3.5.2 วิเคราะห์พื้นที่ผิวและการกระจายตัวของตัวเร่งปฏิกิริยา TiO₂ แบบฟิล์มบาง การวิเคราะห์หาขนาดอนุภาค ลักษณะพื้นผิว และการกระจายตัวของตัวเร่งปฏิกิริยา TiO₂ โดยใช้แผ่นกระจกสไลด์ที่เคลือบผิวของตัวเร่งปฏิกิริยา TiO₂ ที่ใช้เทคนิคโซล-เจล หลังจากนั้น นำไปวิเคราะห์ด้วยอุปกรณ์ Atomic Force Microscopy (AFM) รวมทั้งวิเคราะห์หาพื้นที่ผิวปรากฏ (Apparent Surface Area) ของตัวเร่งปฏิกิริยาดังกล่าวด้วยโปรแกรม Gwyddion Software Version 2.22

3.5.3 วิเคราะห์หาขนาดความกว้างแถบพลังงานของตัวเร่งปฏิกิริยา TiO₂

ในการวิเคราะห์หาขนาดความกว้างของแถบพลังงาน (Bang gap) ของตัวเร่ง ปฏิกิริยา TiO₂ จะใช้แผ่นกระจกสไลด์เคลือบผิวของตัวเร่งปฏิกิริยา TiO₂ ที่ใช้เทคนิคโซล-เจล นำไป วิเคราะห์หาขนาดความกว้างแถบพลังงานด้วยอุปกรณ์ UV-Vis spectrometer

การศึกษาวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา TiO₂ ด้วยเทคนิคต่างๆ แสดงดัง ตารางที่ 3.3

ลักษณะทางกายภาพ	เทคนิค	
โครงสร้างผลึก	X-ray diffraction	
ขนาดกวามกว้างของแถบพลังงาน	UV-Vis Spectroscopy	
พื้นที่ผิวและขนาดอนุภาก	Atomic force microscopy	
พื้นที่ผิวปรากฏ	Gwyddion software version 2.22	

ตารางที่ 3.3 วิเคราะห์ลักษณะทางกายภาพตัวเร่งปฏิกิริยา TiO

3.6 ศึกษาประสิทธิภาพในการกำจัด COD และติดตามการเปลี่ยนแปลง BOD₅, VFA ใน น้ำชะมูลฝอยจากหลุมฝังกลบเก่าโดยกระบวนการโฟโตคะตะลิติก

สำหรับการศึกษาประสิทธิภาพในการกำจัด COD และติดตามการเปลี่ยนแปลง BOD₅, VFA ใน น้ำชะมูลฝอยจากหลุมฝังกลบเก่า โดยกระบวนการ โฟโตคะตะลิติก จะดำเนินการศึกษาดังตารางที่ 3.4

ตารางที่ 3.4 ชุดทดลองสำหรับการศึกษาในการบำบัดน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติกร่วม กับตัวเร่งปฏิกิริยา TiO,

ชุดควบคุม 1	_
ชุดควบคุม 2	\checkmark
ชุคทคลอง	\checkmark

3.6.1 ศึกษาประสิทธิภาพการกำจัด COD

ศึกษาประสิทธิภาพการกำจัด COD จากน้ำชะมูลฝอยด้วยตัวเร่งปฏิกิริยา TiO₂ เคลือบบนผิว ตัวกลาง 3, 4 และ 5 ชั้น

 ทำการศึกษาในถังปฏิกรณ์สำหรับกระบวนการ โฟโตคะตะลิติก โดยนำน้ำตัวอย่าง คือ น้ำชะมูลฝอยมาเงือจางให้มีกวามเข้มข้น 4 ค่า ได้แก่ 320, 640, 720 และ 960 mg/L ตามลำดับ

 2) นำน้ำชะมูลฝอยที่เตรียมความเข้มข้นในข้อที่ 1 มาทำการทดลองใน Photoreactor โดย ใส่น้ำใน Petri dish ที่เคลือบด้วย TiO₂ 3 ชั้น พร้อมกับฉายแสงอัลตราไวโอเลตชนิดเอใน Photoreactor โดยมีความเข้มแสง 1,000 μW/cm²

 เก็บตัวอย่างที่เวลา 0, 30, 60, 90, 120, 150 และ 180 นาที ตามลำคับ หลังจากนั้นนำน้ำ ตัวอย่างที่เก็บตามช่วงเวลาต่างๆ ไปทำการวิเคราะห์หา COD แสดงในรูปที่ 3.5

4) ทำซ้ำข้อที่ 1-3 โดยเปลี่ยนตัวเร่งปฏิกิริยา TiO₂ ที่เคลือบบน Petri dish เป็น 4 และ 5 ชั้น

5) ทำซ้ำข้อที่ 1-4 โดยเปลี่ยนเป็นชุดกวบกุมที่ 1 และ ชุดกวบกุมที่ 2 ดังตารางที่ 3.4

3.6.2 ติดตามการเปลี่ยนแปลง BOD₅ และ VFA

ศึกษาและติคตามการเปลี่ยนแปลง BOD₅ และ VFA ในน้ำชะมูลฝอยด้วยตัวเร่งปฏิกิริยา TiO₂ เคลือบบนผิวตัวกลางของจำนวนชั้นที่มีประสิทธิภาพการกำจัด COD ในน้ำชะมูลฝอยสูงสุด

 ทำการศึกษาในถังปฏิกรณ์สำหรับกระบวนการ โฟโตคะตะลิติก โดยนำน้ำตัวอย่าง คือ น้ำชะมูลฝอยมาเจือจางให้มีความเข้มข้น BOD, แตกต่างกัน เท่ากับ 50, 80, 110 และ 140 mg/L และช่วง ความเข้มข้น VFA เท่ากับ 600, 970, 985 และ 1,110 mg/L as CaCO, ตามลำคับ

 2) นำน้ำชะมูลฝอยที่เตรียมความเข้มข้นในข้อที่ 1 มาทำการทดลองใน Photoreactor โดย ใส่น้ำใน Petri dish ที่เคลือบด้วย TiO₂ ในปริมาตร 50 mL พร้อมกับฉายแสงอัลตราไวโอเลตชนิดเอใน Photoreactor โดยมีความเข้มแสง 1,000 μW/cm²

 ทำการเก็บตัวอย่างที่เวลา 0, 30, 60, 90, 120, 150 และ 180 นาที ตามลำดับ แล้วนำไปทำ การวิเคราะห์หา BOD₅ และสำหรับ VFA เก็บตัวอย่างที่เวลาเริ่มต้นและสิ้นสุดการศึกษา แสดงในรูปที่
 3.6 และ 3.7

4) ทำซ้ำข้อที่ 1-3 โดยเปลี่ยนเป็นชุดควบกุมที่ 1 และ ชุดควบกุมที่ 2 ดังตารางที่ 3.4

ร**ูปที่ 3.6** แผนผังการติดตามการเปลี่ยนแปลง BOD, จากน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติก

รูปที่ 3.7 แผนผังการติดตามการเปลี่ยนแปลง VFA จากน้ำชะมูลฝอยด้วยกระบวนการ โฟโตคะตะลิติก

3.7 การศึกษาค่าจลนพลศาสตร์ของกระบวนการโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอย จากหลุมฝังกลบเก่า

การศึกษาจลนพลศาสตร์ของกระบวนการโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอยจาก หลุมฝังกลบเก่า จะทำการคำนวณหาอัตราการเกิดปฏิกิริยาเพื่อหาสมการจลนพลศาสตร์ที่เหมาะสมใน การอธิบายกลไกการเกิดปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบสำหรับ งานวิจัยนี้

3.8 สถานที่ทำการศึกษา

ห้องปฏิบัติการวิศวกรรมสิ่งแวดล้อม สาขาวิศวกรรมสิ่งแวดล้อม ภาควิชาวิศวกรรมโยธา กณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงกลธัญบุรี

บทที่ 4 ผลการดำเนินงานและการวิเคราะห์ข้อมูล

การศึกษาประสิทธิภาพการกำจัด COD และติดตาม BOD₅, VFA ในน้ำชะมูลฝอยจากหลุม ฝังกลบเก่าด้วยกระบวนการ โฟโตคะตะลิติกร่วมกับตัวเร่งปฏิกิริยา TiO₂ จากผลการศึกษาสามารถ อธิบายผลการศึกษาได้ดังนี้

4.1 ลักษณะสมบัติของน้ำชะมูลฝอยจากหลุมฝังกลบเก่า

การศึกษาประสิทธิภาพการบำบัค COD และติคตามการเปลี่ยนแปลง BOD₅, VFA ในนำชะ มูลฝอยจากหลุมฝังกลบเก่าค้วยกระบวนการ โฟโตคะตะลิติก โคยนำน้ำมาวิเคราะห์ลักษณะและ คุณภาพของน้ำชะมูลฝอยเบื้องต้นก่อนการบำบัค ซึ่งได้แก่ COD, BOD₅, VFA และ pH ตามลำคับ คัง แสคงในตารางที่ 4.1

พารามิเตอร์	ช่วง	หน่วย
COD	1,200-1,600	mg/L
BOD ₅	150-250	mg/L
BOD ₅ / COD	0.1-0.15	<u> - 669 -</u>
VFA	2,150-2,000	mg/L as CaCO ₃
pH	9.3-9.5	9015-

ตารางที่ 4.1 ลักษณะและคุณภาพของน้ำชะมูลฝอยเบื้องต้นก่อนการบำบัด

จากผลการวิเคราะห์ลักษณะและคุณภาพของน้ำชะมูลฝอยที่ได้ทำการวิเคราะห์เบื้องต้นนั้น จะเห็นได้ว่า ลักษณะของน้ำชะมูลฝอยจากหลุมฝังกลบเก่าที่ทำการเก็บรวบรวมมามีคุณสมบัติที่ย่อย สลายได้ยากทางกระบวนการชีวภาพ ประเมินได้จากอัตราส่วนระหว่าง BOD, และ COD ในตารางที่ 4.1 น้ำชะมูลฝอยมีอัตราส่วนค่อนข้างต่ำ 0.1-0.15 เนื่องจากในน้ำชะมูลฝอยที่เก็บรวบรวมมาจากหลุม ฝังกลบเก่า เพราะสารปนเปื้อนที่อยู่ในน้ำชะมูลฝอยจะเป็นพวกสารประกอบเชิงซ้อน [42] สารที่มี โมเลกุลซับซ้อนย่อยสลายยากเป็นส่วนใหญ่ ส่วนสารอินทรีย์ที่ย่อยสลายได้ง่ายนั้นจะหลงเหลืออยู่ น้อยจึงทำให้ BOD, มีก่าก่อนข้างน้อย ส่งผลให้อัตราส่วน BOD,/COD ต่ำลดลงไปด้วย ดังนั้นจึงมี ความจำเป็นในการประยุกต์ใช้เทคโนโลยีขั้นสูงเพื่อช่วยในการบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่า ที่มีค่าอัตราส่วน BOD₅/COD ต่ำ [43-47]

4.2 ลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์

4.2.1 การวิเคราะห์ X-ray Diffraction (XRD)

จากการศึกษาเกี่ยวกับลักษณะ โครงสร้างผลึก (Crystal structure) โดยใช้ตัวอย่างของ ผงตัวเร่งปฏิกิริยา TiO₂ เพื่อใช้สำหรับระบุชนิดและอัตราส่วนของผลึกด้วยเครื่องวิเคราะห์ X-ray Diffractometer โดยผลการวิเคราะห์ลักษณะ โครงสร้างผลึก พบว่า โครงสร้างผลึกของตัวเร่งปฏิกิริยา TiO₂ เป็นแบบผลึกอนาเทส 100 % ภาพแบบการเลี้ยวเบนของรังสีเอ็กซ์จะแสดงค่าสะท้อนกลับที่มุม ตกกระทบ 2 theta เท่ากับ 25.2° ได้จากดังรูปที่ 4.1

รูปที่ 4.1 การเลี้ยวเบนรังสีเอ็กซ์ของผงไทเทเนียมไดออกไซด์

จากข้อมูลผลการวิเคราะห์ลักษณะโครงสร้างผลึกของตัวเร่งปฏิกิริยา TiO₂ ที่เตรียมขึ้น พบว่า ตัวเร่งปฏิกิริยา TiO₂ ที่เตรียมขึ้นมีโครงสร้างผลึกแบบอนาเทส โดยสามารถคำนวณได้ดัง สมการที่ 4.1 [48] ซึ่งผลการศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยา TiO₂ ที่เตรียมขึ้นเป็นไปใน ทิศทางเดียวกันกับการศึกษางานวิจัย [49] ซึ่งสามารถเตรียมตัวเร่งปฏิกิริยา TiO₂ ที่มีโครงสร้างผลึก แบบอนาเทสได้ที่อุณหภูมิระหว่าง 400-600 °C ซึ่งเป็นอุณหภูมิที่ใกล้เคียงกับการศึกษาครั้งนี้

$$X_a = [1 + 1.26(I_r/I_a)]^{-1}$$
(4.1)

4.2.2 การวิเคราะห์ Atomic Force Microscopy (AFM)

เป็นการวิเคราะห์หาขนาด ลักษณะพื้นผิว การกระจายตัวของตัวเร่งปฏิกิริยา TiO₂ ชนิด ฟิล์มบางบนตัวกลางแผ่นกระจก ด้วยอุปกรณ์ Atomic Force Microscope

รูปที่ 4.2 ภาพถ่าย 3 มิติ ด้วยอุปกรณ์ AFM ของตัวเร่งปฏิกิริยา TiO $_2$

จากภาพถ่าย 3 มิติ ด้วยอุปกรณ์ AFM ของตัวเร่งปฏิกิริยา TiO₂ ชนิดฟิล์มบางที่เคลือบผิว 3, 4 และ 5 ชั้น บนแผ่นกระจก แสดงดังรูปที่ 4.2 พบว่า ลักษณะพื้นผิว การกระจายตัว ขนาดของอนุภาก และค่าความขรุขระเฉลี่ย (RMS) รวมไปถึงพื้นที่ผิวปรากฏสามารถของตัวเร่งปฏิกิริยา TiO₂ โดยใช้ โปรแกรม Gwyddion Software ที่แสดงค่าดังตารางที่ 4.2

4.2.3 การวิเคราะห์ด้วย UV-Vis Spectroscopy

การวิเคราะห์ด้วยเครื่อง UV-Vis spectrometer ของตัวเร่งปฏิกิริยา TiO₂ เป็นการ วิเคราะห์หาขนาดความกว้างของแถบพลังงาน โดยอาศัยหลักการดูดกลืนรังสีของสารที่อยู่ในช่วง Ultraviolet (UV) และ Visible (VIS) จากผลการวิเคราะห์ พบว่า ตัวเร่งปฏิกิริยา TiO₂ มีขนาดความ กว้างของช่องว่างพลังงานเท่ากับ 3.26 eV แสดงให้เห็นว่า สามารถเตรียมตัวเร่งปฏิกิริยาที่มีขนาด กวามกว้างของช่องว่างพลังงานต่ำเป็นไปตามคุณสมบัติของ TiO2 ดังตารางที่ 4.2

2010/0/20200200000	TiO ₂ ที่เคลือบบนตัวกลาง		
GT19483 A1 1911 1831 1M	3	4	5
โครงสร้างผลึก		อนาเทส	
ช่องว่างพลังงาน (eV)		3.26	
ขนาดอนุภาค (nm)	25-200	10-50	40-55
RMS (nm)	7.50	1.41	1.47
พื้นที่ผิวปรากฏ (m²/m²) ●	1.23	1.03	1.01
น้ำหนักรวม TiO ₂ บนพื้นผิว $(g/m^2)^{m{0}}$	0.09	0.12	0.15
พื้นที่ผิวปรากฏต่อน้ำหนักทั้งหมด (m²/g) ^{❶/❷}	13.67	8.58	6.73

a		29		9 910	
ตารางท่	4.2	คณสมบตของ	TiO ₂	ชนดฟลเ	บาง
		9	- 2		

จากผลการวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา TiO₂ ด้วยเทคนิควิเคราะห์ดังที่ กล่าวข้างดั่น แสดงให้เห็นว่า ตัวเร่งปฏิกิริยา TiO₂ แบบฟิล์มบางที่เตรียมได้ มีคุณสมบัติที่เหมาะสม สามารถนำมาใช้เป็นตัวเร่งปฏิกิริยาในกระบวนการ โฟโตคะตะลิติกได้ โดยมีลักษณะ โครงสร้างผลึก ชนิดอนาเทส มีช่องว่างแถบพลังงานต่ำ เป็นฟิล์มบางที่มีขนาดอนุภาคระดับนาโน [50-51] นอกจากนี้ จากผลการศึกษา พบว่า จำนวนชั้นของการเกลือบตัวเร่งปฏิกิริยาลงบนพื้นผิวส่งผลให้ขนาดของ อนุภาก TiO₂ บนผิวตัวกลางมีความคงตัวมากขึ้น และมีช่วงความแตกต่างของขนาดอนุภาคน้อยลง แสดงให้เห็นจากขนาดอนุภาคของ TiO₂ ของตัวเร่งปฏิกิริยาที่มีการเกลือบผิว จำนวน s ชั้น มีขนาด อนุภาคระหว่าง 40-55 nm และเมื่อพิจารณาพื้นที่ผิวปรากฏต่อน้ำหนักของตัวเร่งปฏิกิริยาที่เกลือบลง บนผิวตัวกลาง พบว่า ขนาดของพื้นที่ผิวปรากฏมีแนวโน้มลดลงเมื่อจำนวนชั้นของการเกลือบตัวเร่ง ปฏิกิริยาเพิ่มขึ้น แสดงให้เห็นถึงขนาด และการกระจายตัวของตัวเร่งปฏิกิริยาบนพื้นผิวตัวกลางมี ความสม่ำเสมอมากขึ้น

4.3 การศึกษาประสิทธิภาพการบำบัดน้ำชะมูลฝอยด้วยตัวเร่งปฏิกิริยา TiO $_2$

4.3.1 ประสิทธิภาพการบำบัด COD

ในการศึกษาการกำจัด COD ในน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติกโดย ใช้ TiO₂ แบบฟิล์มบางเป็นตัวเร่งปฏิกิริยา ที่เคลือบบน Petri Dish จำนวนชั้นที่ต่างกัน 3 ค่า ได้แก่ 3, 4 และ 5 ชั้น และมีช่วงค่าของความเข้มข้น COD ของน้ำชะมูลฝอยเริ่มตันเท่ากับ 320, 640, 720 และ 960 mg/L ตามลำคับ โดยทำการการศึกษาในชุดควบคุมที่ 1, ชุดควบคุมที่ 2 และชุดทดลอง ที่ ระยะเวลาการเก็บตัวอย่าง 0, 30, 60, 90, 120, 150 และ 180 นาที ตามลำดับ ในสภาวะความเข้มแสง อัลตราไวโอเลต เท่ากับ 1,000 µW/cm²

ข. ความสัมพันธ์ระหว่างการเปลี่ยนแปลง COD ที่ความเข้มข้นเริ่มต้น 640 mg/L

รูปที่ 4.3 ความสามารถในการบำบัดน้ำชะมูลฝอยบนตัวกลาง TiO₂

จากผลการศึกษา พบว่า ในชุดควบคุมที่ 1 และชุดควบคุมที่ 2 ไม่พบการเปลี่ยนแปลง COD และการกำจัดอย่างเห็นได้ชัด แต่สำหรับการกำจัดในชุดการทดลอง พบว่า การเปลี่ยนแปลงความ เข้มข้น COD ลงลดต่อเนื่องอย่างเห็นได้ชัด และประสิทธิภาพการกำจัด COD สูงสุดของกระบวนการ เท่ากับ 25.00%, 41.50% และ 56.25 % ในน้ำชะมูลฝอยที่มีความเข้มข้น COD เริ่มต้น 320 mg/L สำหรับตัวเร่งปฏิกิริยาที่มีจำนวนชั้นเคลือบผิว 3, 4 และ 5 ชั้น ตามลำดับ เมื่อพิจารณาประสิทธิการกำจัด COD ในน้ำชะมูลฝอย แสดงให้เห็นว่า เมื่อความเข้มข้น COD ในน้ำชะมูลฝอยที่เพิ่มขึ้น ในการศึกษาแสดงให้เห็นว่า เมื่อความเข้มข้นเพิ่มขึ้นส่งผลให้ประสิทธิภาพ ในการบำบัดของกระบวนการลดลง และในการเกลือบผิวของตัวเร่งปฏิกิริยาที่มีจำนวนชั้นเพิ่มขึ้น แสดงให้เห็นถึงประสิทธิภาพการบำบัดเพิ่มขึ้น เนื่องจากการเพิ่มจำนวนชั้น ส่งผลทำให้มีพื้นที่ผิว การ กระจายตัว และขนาดอนุภาดที่สม่ำเสมอกันตลอดทั้งพื้นที่ผิวที่เกลือบลงบนตัวกลาง ทำให้ เกิดปฏิกิริยาในการบำบัดของกระบวนการได้ดี [52] ทั้งนี้ประสิทธิภาพการกำจัด COD ในน้ำชะมูลฝอย โดยกระบวนการโฟโตกะตะลิติกจะมีก่าลดลงเมื่อกวามเข้มข้นของ COD เริ่มต้นมีก่าเพิ่มขึ้นในทุกชั้นของ การเกลือบผิวตัวเร่งปฏิกิริยา ซึ่งมีสาเหตุมาจากความเข้มข้น COD ของน้ำชะมูลฝอยที่น้อยที่สุด จะมี ความเข้มของสีที่โปร่งแสงทำให้แสงสามารถส่องผ่านลงไปบนหน้าพื้นที่ผิวของตัวเร่งปฏิกิริยาทำให้ เกิดปฏิกิริยาโฟโตออกซิเดชันได้ดี และที่กวามเข้มข้น COD ของน้ำชะมูลฝอยที่น้อยที่สุด จะมี ความเข้มของสีที่เปร่งแสงทำให้แสงสามารถส่องผ่านลงไปบนหน้าพื้นที่ผิวของตัวเร่งปฏิกิริยาทำให้ เกิดปฏิกิริยาโฟโตออกซิเดชันได้ดี และที่กวามเข้มข้น COD ของน้ำชะมูลฝอยที่มากขึ้นทำให้มีความ เข้มสีที่เพิ่มขึ้นรวมไปถึงการเพิ่มขึ้นของปริมาณสารมัธยันตร์ (Intermediate Product) และแสง (อนุภากโฟตอน) ส่องลงไปที่ผิวหน้าของตัวเร่งปฏิกิริยาได้น้อยลง [53] จึงเป็นเหตุผลทำให้ที่ตัวเร่ง ปฏิกิริยาที่เกลือบผิวบนตัวกลางในจำนวนชั้นที่มากที่สุด คือ 5 ชั้น มีประสิทธิภาพการกำจัด COD ใน น้ำชะมูลฝอยสูงสุด ในกวามเข้มข้น 320 mg/L ดังตาราง 4.3 และรูปที่ 4.4

จำนวนชั้นที่ เวรือง		ระสิทธิภาพในการบํ ความเข้มข้น CO	าบัดน้ำชะมูลฝอย (% D เริ่มต้น (mg/L)	(o)
เทยอก —	320	640	720	960
3	25.00	21.88	27.78	18.75
4	41.56	31.25	30.56	20.83
5	56.25	34.38	38.9	22.92

ตารางที่ 4.3 ประสิทธิภาพการบำบัคน้ำชะมูลฝอยโคยใช้ TiO2

เทิดโนโลยีราช

รูปที่ 4.4 ประสิทธิภาพการบำบัด COD ของน้ำชะมูลฝอย

4.3.2 การติดตามการเปลี่ยนแปลง BOD₅

จากผลการศึกษาที่ผ่านมาข้างต้น พบว่า ลักษณะทางกายของตัวเร่งปฏิกิริยา TiO₂ และประสิทธิภาพการกำจัด COD ในน้ำชะมูลฝอย แสดงให้เห็นว่า ตัวเร่งปฏิกิริยา TiO₂ ที่เคลือบผิว ลงบน Petri Dish จำนวน 5 ชั้น มีคุณสมบัติที่เหมาะสมที่สุดสำหรับใช้เป็นตัวเร่งปฏิกิริยาใน กระบวนการ โฟโตคะตะลิติกมาบำบัคน้ำชะมูลฝอยจากหลุมฝังกลบในงานวิจัยครั้งนี้ รวมไปถึงมี ประสิทธิภาพในการกำจัด COD ที่สูงสุด เท่ากับ 56.25 %

ดังนั้นในการศึกษาติดตามการเปลี่ยนแปลงความเข้มข้นของ BOD, จึงทำการศึกษา ในสภาวะที่ใช้ตัวเร่งปฏิกิริยา TiO, เคลือบผิวตัวกลางจำนวน 5 ชั้น สำหรับใช้เป็นตัวเร่งปฏิกิริยาใน การศึกษาการเปลี่ยนแปลงความเข้มข้นของ BOD, ในน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติก ที่การเจือจางความเข้มข้น BOD, เท่ากับ 50, 80, 110 และ 140 mg/L โดยทำการการศึกษาในชุด ควบคุมที่ 1, ชุดควบคุมที่ 2 และชุดทดลอง ที่ระยะเวลาการเก็บตัวอย่าง 0, 30, 60, 90, 120, 150 และ 180 นาที ตามลำดับ ในสภาวะความเข้มแสงอัลตราไวโอเลต เท่ากับ 1,000 μW/cm²

ความเข้มข้น BOD ₅ (mg/L)		
เริ่มต้น	180 นาที	— % BOD5 ทเพม าน
50	74	32.0%
80	110	27.3%
110	126	12.7%
140	162	13.6%

ตารางที่ 4.4 การเปลี่ยนแปลง BOD, หลังผ่านกระบวนการบำบัดด้วยกระบวนการ โฟโตกะตะลิติก

ร**ูปที่ 4.5** ความสัมพันธ์ระหว่างความเข้มข้น BOD_s ในน้ำชะมูลฝอยกับเวลาในการเกิดปฏิกิริยา สำหรับกระบวนการ โฟโตคะตะลิติก

จากการศึกษา พบว่า ในชดควบคุมที่ 1 และชุดควบคุมที่ 2 ไม่พบการเปลี่ยนแปลง BOD, อย่างเป็นนัยสำคัญ แต่สำหรับการเปลี่ยนแปลงในชุดการทดลอง พบว่า เมื่อพิจารณาการ เปลี่ยนแปลงความเข้มข้นค่า BOD, ในน้ำชะมูลฝอยที่ผ่านกระบวนการ โฟโตคะตะลิติก ค่าความ เข้มข้น BOD, มีการเปลี่ยนแปลงความเข้มข้นเพิ่มขึ้นและลดลงตลอดระยะเวลาที่ทำการศึกษา ดังรูปที่ 4.5 เนื่องจากกระบวนการดังกล่าวเกิดปฏิกิริยาออกซิเดชันในกระบวนการทำให้ได้ผลิตภัณฑ์ เป็นไฮดรอกซิลเรติดอล (•OH) ซึ่งเป็นสารออกซิไดซ์ชนิดหนึ่ง โดย •OH ทำปฏิกิริยากับสารประกอบ อินทรีย์เชิงซ้อน [21] ที่อยู่ในน้ำชะมูลฝอยทำให้สามารถเปลี่ยนสารอินทรีย์ที่ย่อยสลายยากมีโมเลกุล ซับซ้อนในน้ำชะมูลฝอยจากหลุมฝึงกลบเก่า ให้มีโมเลกุลซับซ้อนน้อยลงและย่อยสลายง่ายขึ้น ส่งผล ให้ปริมาณค่า BOD, มีค่าเพิ่มสูงขึ้น และส่วนค่า BOD, ที่ลงลคนั้นเกิดจากระหว่างการเกิดปฏิกิริยา ย่อยสลายโมเลกุลให้เล็กลงนั้นจะเกิดปฏิกิริยาในการย่อยสารอินทรีย์ควบคู่ไปด้วยจึงส่งผลให้ค่า ปริมาณความเข้มข้น BOD, นั้นลดต่ำลง จึงเห็นได้ว่าค่า BOD,ในการบำบัคด้วยกระบวนการโฟโตคะ ตะลิติกในน้ำชะมูลฝอยมีการเปลี่ยนแปลงปริมาณความเข้มข้น BOD, เพิ่มขึ้นและลดลงตลอด ระยะเวลาที่ทำการศึกษา และเมื่อระยะเวลาที่ผ่านการบำบัคของกระบวนการดังกล่าว คือ 180 นาที จากตารางที่ 4.4 จะเห็นได้ว่า ค่า BOD, มีค่าเพิ่มขึ้นอย่างเห็นได้ชัดในทุกความเข้มข้นที่ได้ ทำการศึกษา คือ BOD, เท่ากับ 50, 80, 110 และ 140 mg/L สามารถเพิ่มค่า BOD, หลังบำบัคได้ เท่ากับ 32.0, 27.3, 12.7 และ 13.6% ตามลำดับ แสดงให้เห็นว่า กระบวนการดังกล่าวเหมาะสำหรับเป็น กระบวนการขั้นด้น (Pre-treatment) เนื่องจากสามารถเปลี่ยนสภาพของน้ำชะมูลฝอยให้มีคุณภาพน้ำที่ เหมาะสมกับการย่อยสลายด้วยกระบวนการบำบัคทางชีวภาพ

4.3.3 การติดตามการเปลี่ยนแปลง VFA

ทำการศึกษาโดยใช้ตัวเร่งปฏิกิริยา TiO₂ เคลือบบนตัวกลางจำนวน 5 ชั้น สำหรับ ศึกษาการเปลี่ยนแปลงค่าความเข้มข้น VFA ในน้ำชะมูลฝอย ซึ่งได้เจือจางความเข้มข้น VFA เท่ากับ 600, 970, 985 และ 1,110 mg/L as CaCO, ตามลำคับ โดยทำการการศึกษาในชุดควบคุมที่ 1, ชุด ควบคุมที่ 2 และชุดทดลอง ที่ระยะเวลาการเก็บตัวอย่าง 0, 30, 60, 90, 120, 150 และ 180 นาที ตามลำคับ ในสภาวะความเข้มแสงอัลตราไวโอเลต เท่ากับ 1,000 μW/cm²

ความเข้มข้น VFA	ความเข้มข้น VFA (mg/L as CaCO3)	
เริ่มต้น	180 นาที	(%)
600	540	10.0%
970	19/1900 951	7.2%
985	920	6.6%
1,110	1,040	6.3%

ตารางที่ 4.5 การเปลี่ยนแปลง VFA หลังผ่านกระบวนการบำบัดด้วยกระบวนการ โฟโตคะตะลิติก

จากการศึกษาการเปลี่ยนแปลงความเข้มข้น VFA ในน้ำชะมูลฝอยจากหลุมฝังกลบ เก่า พบว่า ในชุดควบคุมที่ 1 และชุดควบคุมที่ 2 ไม่พบการเปลี่ยนแปลงของความเข้มข้น VFA อย่างมี นัยสำคัญ แต่ในชุดการทดลอง พบว่า จากดังตารางที่ 4.5 หลังจากผ่านการบำบัดด้วยกระบวนการโฟ โตคะตะลิติกที่ใช้ระยะเวลาในการบำบัด 180 นาที มีก่า VFA ลดลงในทุกความเข้มข้นที่ทำการศึกษา กือ 600, 970, 985 และ 1,110 mg/L as CaCO₃เท่ากับ 6.3, 6.6, 7.2 และ 10.0% ตามลำดับ

เมื่อพิจารณาการเปลี่ยนแปลงแสดงให้เห็นว่า กระบวนการดังกล่าวสามารถกำจัด VFA ที่อยู่ในน้ำชะมูลฝอยได้ในชุดการทดลอง โดยเมื่อผ่านการบำบัดค่า pH ในน้ำเสียที่เวลา 180 min พบว่า pH มีค่าการเปลี่ยนแปลงอยู่ระหว่าง 9.2-9.4

4.3.4 อัตราส่วนระหว่าง BOD, กับ COD

จากผลการศึกษาข้างค้น พบว่า เมื่อพิจารณาความสัมผัสระหว่างอัตราส่วน BOD₅ กับ COD ในน้ำชะมูลฝอยจากหลุมฝังกลบเก่าด้วยกระบวนการ โฟโตคะตะลิติกที่ใช้ตัวเร่งปฏิกิริยา TiO₂ สามารถเพิ่มอัตราส่วน BOD₅: COD ของน้ำชะมูลมูลฝอย ที่มีอัตราส่วนก่อนข้างต่ำในตอน เริ่มค้นการบำบัดของกระบวนการอยู่ระหว่าง 0.1-0.15 เมื่อผ่านกระบวนการบำบัด 180 นาที ส่งผลให้ อัตราส่วน BOD₅:COD เพิ่มสูงขึ้นอยู่ระหว่าง 0.2-0.5 ได้เท่ากับ 69.64, 54.11, 49.82 และ 33.38% ใน อัตราส่วน BOD₅:COD เท่ากับ 50:320, 80:640, 110:720 และ 140:960 ตามลำดับ ที่แสดงดังตารางที่ 4.3 และรูปที่ 4.6

เวลา (นาที) -	BOD ₅ ;COD			
	50:320	80:640	110:720	140:960
0	0.159	0.126	0.140	0.146
180	0.525	0.274	0.278	0.219
% ที่เพิ่มขึ้น	69.64%	54.11%	49.82%	33.38%

ตารางที่ 4.6 อัตราส่วนระหว่าง BOD,:COD

ร**ูปที่ 4.6** อัตราส่วนระหว่าง BOD₅:COD ในการบำบัดด้วยโฟโตกะตะลิติก

เมื่อพิจารณาอัตราส่วนระหว่าง BOD₅:COD หลังจากผ่านการบำบัดน้ำชะมูลฝอย ด้วยกระบวน โฟโตคะตะลิติก พบว่า อัตราส่วน BOD₅:COD เพิ่มสูงขึ้น อันเนื่องมาจาก กระบวนการโฟโตคะตะลิติกนั้นได้เกิดปฏิกิริยาไปทำลายเสถียรภาพของสารประกอบอินทรีย์ และอนิทรีย์เชิงซ้อนที่อยู่ในน้ำชะมูลฝอย ทำให้มีโครงสร้างโมเลกุลของน้ำชะมูลฝอยที่ผ่านการบำบัด มีโกรงสร้างโมเลกุลเล็กลงและย่อยสลายได้ง่ายขึ้น ส่งผลให้ก่า BOD, มีแนวโน้มสูงขึ้น และในทาง กลับกันความเข้มข้น COD นั้นมีก่าลดลงอย่างต่อเนื่อง จึงทำให้อัตราส่วน BOD,:COD ของกระบวน ดังกล่าวที่ทำการบำบัดน้ำชะมูลฝอยนั้นมีอัตราส่วนเพิ่มสูงขึ้นหลังจากผ่านกระบวนการบำบัด ดังรูปที่ 4.7 ซึ่งอัตราส่วน BOD,:COD ที่เพิ่มขึ้นอยู่ระหว่าง 0.2-0.5 ซึ่งช่วงอัตราส่วนดังกล่าวมีก่าที่เพิ่มขึ้น ใกล้เกียงกับงานวิจัยของ Chenzhong J. และคณะ ที่เพิ่มขึ้นจาก 0.09 ไปถึง 0.39 [54] เป็นลักษณะของ คุณภาพน้ำที่เหมาะสมสำหรับการนำมาบำบัดค่อด้วยกระบวนทางชีวภาพ ซึ่งเป็นอีกทางเลือกหนึ่งใน การเพิ่มประสิทธิภาพในการบำบัดน้ำชะมูลฝอยให้มีกุณภาพน้ำที่ดีขึ้น [55]

4.4 จถนพลศาสตร์ของปฏิกิริยาโฟโตคะตะลิติก

ผลการศึกษาจลนพลศาสตร์ของปฏิกิริยาโฟโตคะตะลิติก โดยใช้แหล่งกำเนิดแสงจาก หลอดอัลตราไวโอเลตชนิดเอ ที่มีความยาวคลื่นประมาณ 365 nm และมีความเข้มแสง 1,000 µW/cm² โดยผลการศึกษาการเปลี่ยนแปลงความเข้มข้นของ COD ที่ถูกกำจัดในน้ำชะมูลฝอยบนตัวกลางที่ เคลือบผิวตัวเร่งปฏิกิริยา TiO₂ จำนวน 3, 4 และ 5 ชั้น ที่ระยะเวลาต่างๆระหว่างการศึกษา ผล การศึกษาดังกล่าว สามารถอธิบายจลนพลศาสตร์ของการเกิดปฏิกิริยาในการบำบัดน้ำชะมูลฝอยได้

เมื่อพิจารณาผลการศึกษา พบว่า สมการที่เหมาะสมในการอธิบายจลนพลศาสตร์ของ ปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่าร่วมกับตัวเร่งปฏิกิริยา TiO₂ ที่ เตรียมขึ้น คือ สมการ L-H Model [56] สามารถเขียนกราฟแสดงความสัมพันธ์ระหว่างค่าส่วนกลับ ความเข้มข้นของน้ำชะมูลฝอย (C⁻¹) กับส่วนกลับอัตราการเกิดปฏิกิริยาโฟโตคะตะลิติก (r⁻¹) บนตัวเร่ง ปฏิกิริยา TiO₂ ในจำนวนชั้นที่เคลือบผิวต่างๆในช่วงระยะเวลาการบำบัด 0-90 นาทีแรก ดังแสดงใน ดังรูปที่ 4.7

รูปที่ 4.7 จลนพลศาสตร์ของการเกิดปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอย
จากกราฟข้างต้นเป็นการแสดงความสัมพันธ์ระหว่าง C⁻¹ กับ r⁻¹ สามารถนำมาคำนวณหา ค่าคงที่การเกิดปฏิกิริยาโฟโตกะตะลิติกในการบำบัดน้ำชะมุลฝอย ที่ใช้ตัวเร่งปฏิกิริยา TiO₂ ในจำนวน ชั้นเกลือบผิวที่แตกต่างกัน ตามสมการ L-H Model ได้ในตารางที่ 4.7

	a.,		ଧ	
ตัวเร่งปฏิกิริยา	ວວາມມາມແຂາ	ค่าคงที่การเกิดปฏิกิริยา		
TiO ₂ ที่เคลือบผิว		k	K	kK
ตัวกลาง (ชั้น)	(<i>µ</i> w/cm)	(mol/L·min)	(L/mol)	(1/min)
3	1,000	1.29×10^{-3}	3.24	0.004
4	1,000	1.29×10^{-3}	9.48	0.012
5	1,000	1.42×10 ⁻³	24.94	0.035

ตารางที่ 4.7 ก่ากงที่ของการเกิดปฏิกิริยาโฟโตกะตะลิติกในการบำบัดน้ำชะมูลฝอย

จากผลการศึกษาจลนพลศาสตร์ของการเกิดปฏิกิริยาในกระบวนการโฟโตคะตะลิติก แสดงให้ เห็นว่า อัตราการเกิดปฏิกิริยามีค่าสูงในระยะการบำบัดช่วงแรกของกระบวนการ เนื่องจากตัวเร่ง ปฏิกิริยายังคงมีพื้นผิวที่ปราศจากสารอินทรีย์หรือสิ่งเกาะติดที่มาดูดติดบนผิวตัวเร่งปฏิกิริยา จึงทำให้ อัตราการเกิดปฏิกิริยาในระยะเวลาช่วงแรกของการบำบัดนั้นเกิดการการดูดติดผิวระหว่าง สารประกอบอินทรีย์ที่อยู่ในน้ำชะมูลฝอยกับบนพื้นผิวของตัวเร่งปฏิกิริยา จึงได้นำสมการ L-H Model มาใช้สำหรับอธิบายกลไลการเกิดปฏิกิริยาของกระบวนการ พบว่า ตัวเร่งปฏิกิริยา TiO₂ ที่เคลือบผิว ตัวกลางจำนวน 5 ชั้น มีค่าคงที่ของการดูดซับ (*K*) และค่าคงที่การเกิดปฏิกิริยา (*k*) มากกว่าตัวเร่ง ปฏิกิริยา TiO₂ เคลือบผิวตัวกลางจำนวน 3 และ 4 ชั้น

เมื่อพิจารณอัตราการเกิดปฏิกิริยาจำเพาะในกระบวนการโฟโตคะตะลิติก ที่สามารถ กำนวณได้จากค่า *kK* หารด้วยผลคูณระหว่างพื้นที่ผิวเฉพาะกับความเข้มแสงที่ใช้สำหรับในการศึกษา งานวิจัยนี้ นำมาเปรียบเทียบกับงานวิจัยของ (Mansouri L. and et al.) ซึ่งทำการศึกษาจลนพลศาสตร์ ของกระบวนการโฟโตคะตะลิกในการบำบัดน้ำชะมูลฝอย ร่วมกับตัวเร่งปฏิกิริยา TiO₂ ที่มีลักษณะ ใกล้เกียงกับงานวิจัยนี้ แสดงดังตารางที่ 4.8

[2	4]				
	kK	พื้นที่ผิว	ความเข้มแสง	อัตราการเกิดปฏิกิริยา	
ต้าเร่งปลิลิริยา	(1/min)	(m ²)	$(\mu W/cm^2)$	จำเพาะ	งางเวิลัย
พ ขรอง กรู้ไม่ จุด เ				(1/min•µW)	116 300
	(1)	(2)	(3)	(1)/{(2)×(3)}	
TiO ₂ 3 ชั้น	0.004			6.67×10^{-8}	
TiO ₂ 4 ชั้น	0.012	0.006	1,000	2.00×10 ⁻⁷	งานวิจัยนี้
TiO ₂ 5 ชั้น	0.035			5.83×10 ⁻⁷	
					Mansouri L.
TiO ₂	0.008	0.006	15,000	8.89×10 ⁻⁹	และคณะ
					(2007)

ตารางที่ 4.8 เปรียบเทียบค่าคงที่ปฏิกิริยาโฟโตคะตะลิติกในการบำบัดน้ำชะมูลฝอยกับงานวิจัยอื่น [24]

จากการเปรียบเทียบค่าคงที่ปฏิกิริยาโฟโดคะตะลิติกในการบำบัดน้ำชะมูลฝอยในตารางที่ 4.8 กับงานวิจัยอื่น พบว่า อัตราการเกิดปฏิกิริยาจำเพาะที่ได้จากการคำนวณของค่า *kK* หารด้วยผลลูณ ระหว่างพื้นที่ผิวเฉพาะกับความเข้มแสงที่ใช้ในการศึกษา โดยในงานวิจัยของ Mansouri L. และคณะ มีค่าอัตราการเกิดปฏิกิริยาจำเพาะใกล้เลียงกับงานวิจัยนี้ คือ 8.89×10° 1/min·µW ซึ่งงานวิจัยนี้มีอัตราการ เกิดปฏิกิริยาจำเพาะเมื่อใช้ตัวเร่งปฏิกิริยาที่เคลือบผิวบนตัวกลางจำนวน 3, 4 และ 5 ชั้น มีค่าเท่ากับ 6.67×10⁻⁵, 2.00×10⁻⁷ และ 5.83×10⁻⁷ 1/min·µW ตามลำดับ จะเห็นได้ว่า อัตราการเกิดปฏิกิริยาจำเพาะ ในการบำบัดน้ำชะมูลฝอยของกระบวนการโฟโตกะตะลิติก เมื่อเปรียบเทียบกับงานวิจัย Mansouri L. และคณะ ที่ใช้ความเข้มแสง 15,000 µW/cm² กับงานวิจัยที่ที่ใช้แหล่งกำเนิดแสงอัลตราไวโอเลตที่มี ความเข้มแสงเพียง 1,000 µW/cm² ให้ก่าอัตราการเกิดปฏิกิริยาจำเพาะที่เพิ่มขึ้น เมื่อจำนวนของชั้น ของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่เกลือบผิวลงบนตัวการมีจำนวนชั้นที่เพิ่มขึ้นตามไปด้วย และ พบว่า เมื่อพิจารณาตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่เกลือบผิวบนตัวการมีจำนวนชั้นที่เพิ่มขึ้นตามไปด้วย และ พบว่ามูลคือในตรณาตัวเร่งปฏิกิริยาโทเทเนียมไดออกไซด์ที่เกลือบผิวการมีจำนวนชั้นที่เพิ่มขึ้นตามไปด้วย และ ทบว่าเมื่อพิจารณาตัวเร่งปฏิกิริยาไทเทเนียมใดออกไซด์ที่เกลือบผิวการมีจำนวนชั้นที่เพิ่มขึ้นตามไปด้วย และ พบว่าเมื่อหิจารณาตัวเร่งปฏิกิริยาโทเทเนียมใดออกไซด์ที่เกลือบผิวบนตัวกลางจำนวน 3, 4 และ 5 ชั้น ในงานวิจัยนี้มีก่าอัตราการเกิดปฏิกิริยาจำเพาะสูงกว่างานวิจัยของ Mansouri L. และคณะ ดังนั้น ผลการศึกษาในครั้งนี้สามารถนำตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่เครือบผิวบนตรางางานวน 1 ประยุกต์ใช้สำหรับการบำบัดน้ำชะมูลฝอยจากหลุมฝึงกลอบเก่าด้วยกระบวนการโฟโตกะตะลิติกที่ใช้ แหล่งกำเนิดแสงอัลตราไวโอเลตได้อย่างมีประสิทธิภาพ

บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ

5.1 สรุปผลการวิจัย

จากการศึกษาประสิทธิภาพในการกำจัด COD และติดตามการเปลี่ยนแปลงความเข้มข้น BOD₅ กับ VFA ในน้ำชะมูลฝอยจากหลุมฝังกลบเก่า โดยกระบวนการโฟโตคะตะลิติกร่วมกับตัวเร่ง ปฏิกิริยาไทเทเนียมไดออกไซด์สามารถสรุปผลการวิจัยได้ดังนี้

5.1.1 ลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์

ผลการวิเคราะห์ลักษณะทางกายภาพของไทเทเนียมไดออกไซด์ชนิดฟิล์มบางที่ เตรียมโดยวิธีโซลเจล ทุกจำนวนชั้นที่เคลือบผิวคือ 3, 4 และ 5 ชั้น จากผลการวิเคราะห์ พบว่า ตัวเร่ง ปฏิกริยาที่เตรียมได้นั้นมีคุณสมบัติที่เหมาะสมสำหรับเป็นตัวเร่งปฏิกิริยาในกระบวนการโฟโตคะตะลิติก เมื่อพิจารณาจากผลการวิเคราะห์ด้วย XRD, AFM และ UV-Vis spectrometer ที่ระบุว่าตัวร่งปฏิกิริยา เป็นผลึกอนาเทส มีช่องแถบพลังงานเท่ากับ 3.2 eV รวมไปถึงลักษณะพื้นที่ผิว ขนาดอนุภาค และ ลักษณะการกระจายตัวที่สม่ำเสมอกันตลอดทั้งพื้นที่ผิว ซึ่งลักษณะดังกล่าวส่งให้มีประสิทธิภาพการ กำจัด COD และมีการเปลี่ยนแปลงความเข้มข้น BOD_s กับ VFA มีประสิทธิภาพที่ดี

5.1.2 ประสิทธิภาพการกำจัด COD

ผลศึกษาการกำจัด COD ในน้ำชะมูลฝอยด้วยกระบวนการ โฟโตคะตะลิติก ที่มีช่วง กวามเข้มข้นแตกต่างกัน 4 ความเข้มข้น คือ 320, 640, 720 และ 960 mg/L โดยใช้ตัวเร่งปฏิกิริยา ใทเทเนียมใดออกไซด์ และแหล่งกำเนิดแสงเป็นหลอดอัลตราไวโอเลต ที่มีความยาวคลื่นประมาณ 365 nm และกวามเข้มแสง 1,000 µW/cm² พบว่า ไทเทเนียมไดออกไซด์ที่เคลือบบนผิว Petri Dish 5 ชั้น มีประสิทธิภาพการกำจัด COD จากน้ำชะมูลฝอยด้วยกระบวนการ โฟโตกะตะลิติกสูงสุด เท่ากับ 56.25 % ที่ความเข้มข้น 320 mg/Lในระยะเวลาการบำบัด 180 นาที

5.1.3 การเปลี่ยนแปลงความเข้มข้นของ BOD, และ VFA

ผลศึกษาการกำจัด BOD, จากน้ำชะมูลฝอยด้วยตัวเร่งปฏิกิริยาไทเทเนียมได ออกไซด์โดยกระบวนการโฟโตคะตะลิติกที่มีความเข้มข้น BOD, แตกต่างกัน 4 ความเข้มข้น เท่ากับ 50, 80, 110 และ 140 mg/L และช่วงความเข้มข้น VFA เท่ากับ 600, 970, 985 และ 1,100 mg/L as CaCO₃ตามลำดับ โดยใช้ตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์เคลือบบนผิว Petri Dish จำนวน 5 ชั้น ที่มีแหล่งกำเนิดแสงเป็นหลอดอัลตราไวโอเลต มีความยาวคลื่นประมาณ 365 nm และความเข้มแสง 1,000 µW/cm²

พบว่า ค่า BOD₃ มีการเปลี่ยนแปลงความเข้มข้นเพิ่มขึ้นและลดลงตลอดระยะเวลาที่ ทำการศึกษา และ VFA หลังผ่านกระบวนการบำบัดไป 180 นาที มีความเข้มข้นลดลงคิดเป็นเปอร์เซ็น เท่ากับ 6.3, 6.6, 7.2 และ 10% ทุกความเข้มข้นที่ทำการศึกษา คือ 600, 970, 985 และ 1,110 mg/L as CaCO₃ ตามลำดับ

5.1.4 การศึกษาจลนพลศาสตร์ของกระบวนการ โฟโตคะตะลิติก

จากการศึกษาจลนพลศาสตร์ของกระบวนการ โฟโตคะตะลิติก โดยพิจารณาจากผล การศึกษาประสิทธิภาพการกำจัด COD ในน้ำชะมูลฝอยจากหลุมฝังกลบเก่า ที่สภาวะความเข้มแสง 1,00 µW/cm² สามารถนำมาหาความสัมพันธ์ระหว่าง ส่วนกลับความเข้มข้นของน้ำชะมูลฝอย (C⁻¹) กับส่วนกลับอัตราการเกิดปฏิกิริยาโฟโตคะตะลิติก (r⁻¹) จากสมการ L-H model ได้ค่าคงที่การ เกิดปฏิกิริยาเป็นอันดับหนึ่ง (*kK*) เท่ากับ 0.4×10⁻², 1.2×10⁻² และ 3.5×10⁻² 1/min ซึ่งนำมาหาอัตราการ เกิดปฏิกิริยาจำเพาะที่ได้จากการกำนวณค่า *kK* หารด้วยผลดูณระหว่างพื้นที่ผิวเฉพาะกับความเข้มแสง ที่ใช้ในการศึกษา มีค่าเท่ากับ 6.67×10⁻⁸, 2.00×10⁻⁷ และ 5.83×10⁻⁷ 1/min[.]µW บนตัวเร่งปฏิกิริยา จำนวนชั้นการเกลือบ 3, 4 และ 5 ชั้น ตามลำดับ

ดังนั้นการศึกษางานวิจัยในครั้งนี้ ที่ได้นำกระบวนการโฟโตคะตะลิติกร่วมกับตัวเร่ง ปฏิกิริยาไทเทเนียมไดออกไซด์มาใช้ในการบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่า ที่คุณสมบัติความ กงตัวและเสียรภาพสูง ซึ่งยากต่อการบำบัดด้วยกระบวนการทางชีวภาพ จากผลการศึกษา แสดงให้ เห็นว่า กระบวนการดังกล่าวสามารถกำจัดความเข้มข้น COD ที่อยู่ในน้ำชะมูลฝอยได้อย่างมี ประสิทธิภาพ ในระยะเวลาที่ทำการศึกษา

ร่วมไปถึงกระบวนการโฟโตคะตะลิติกสามารถเพิ่มอัตราส่วน BOD_s:COD ให้น้ำชะ มูลฝอยที่หลังจากผ่านการบำบัด ให้มีอัตราส่วนที่เพิ่มสูงขึ้นโดยโมเลกุลของสารประกอบอินทรีย์ใน น้ำชะมูลฝอยเล็กลงและย่อยสลายง่ายขึ้น ส่งผลให้คุณภาพของน้ำชะมูลฝอยที่ผ่านกระบวนการบำบัด ดังกล่าวนั้น สามารถนำมาประยุกต์บำบัดต่อด้วยกระบวนทางบำบัดทางชีวภาพเพื่อเพิ่มประสิทธิภาพ ในการบำบัดน้ำชะมูลฝอยให้มีประสิทธิภาพดียิ่งขึ้น

5.2 ข้อเสนอแนะ

การศึกษาประสิทธิภาพในการกำจัด COD จากน้ำชะมูลฝอยด้วยตัวเร่งปฏิกิริยาไทเทเนียม ไดออกไซด์โดยกระบวนการโฟโตกะตะลิติก กวรมีข้อเสนอแนะเพิ่มเติมในหัวข้อดังต่อไปนี้

5.2.1 ศึกษาตัวเร่งปฏิกิริยาชนิดอื่นที่ส่งผลต่อประสิทธิภาพในการกำจัด COD ในน้ำชะมูล ฝอย

5.2.2 ศึกษากระบวนการเตรียมตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ด้วยวิธีอื่นๆเพื่อลด ดวามยุ่งยากในขั้นตอนการเตรียม นอกเหนือจากการเตรียมด้วยวิธีโซล-เจล

5.2.3 ศึกษาผลของการเติมสารช่วยในการออกซิไดซ์เพื่อช่วยให้อัตราการเกิดปฏิกิริยา สูงขึ้น

5.2.4 ศึกษากลไกในการเปลี่ยนรูปสารประกอบที่อยู่ในน้ำชะมูลฝอยก่อนและหลังการเกิด กระบวนการ

บรรณานุกรม

- กรมควบคุมมลพิษ, "รายงานสถานการณ์มลพิษของประเทศไทย ปี 2557," น. 3-1, กรกฎาคม 2558.
- [2] Allen, A.,. Containment landfills: the myth of sustainability, vol. 60 : Elsevier, 2001.
- [3] G. KalČíková, J. BabiČ, A. Pavko, and A.Ž. Gotvajn 2014. "Fungal and enzymatic treatment of mature municipal landfill leachate," *Waste Manage*, vol. 34, pp.798-803, 2014.
- [4] Oller, I, S. Malato, and J. A. Sánchez-Pérez, "Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review," *Science of the Table Environment*, vol. 409, pp. 4141-4166, 2011.
- [5] K. S. Shrawan, Z. T. Walter, and T. Georgio, "Fenton treatment of landfill leachate under different COD loading factors," *Waste Management*, vol. 33, pp. 2116-2122, 2013.
- [6] M. G. Niloufar, A. L. Andres, and J. W.Michael, "Hydroxyl radical (OH) scavenging in young and mature landfill leachates," *Water research*, vol. 56, pp. 148-155, 2014.
- [7] A. Fernandes, D. Santos, M. J. Pacheco, L. Ciríaco, and A. Lopes, "Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO₂, Ti/Pt/SnO₂-Sb₂O₄ and Si/BDD," *Applied Catalysis B*, pp. 148–149, 2014.
- [8] R. Poblete, E. Otal, L. F. Vilches, J. Vale, and C. Fernández-Pereira, "Photocatalytic degradation of humic acids and landfill leachate using a solid industrial byproduct containing TiO₂ and Fe," *Applied Catalysis B: Environmental*, vol. 102, pp. 172-179, 2010.
- [9] เบญญาภา ขนั้นไทย, "อิทธิพลของการบำบัดขั้นด้นต่อการอุดดันบนเยื่องกรองออสโมซิสผันกลับ ในการบำบัดน้ำชะมูลฝอย," วิทยานิพนธ์ปริญญาหมาบัณฑิต, คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเกษตรศาสตร์, 2554.

- [10] ปาริชาต จุลพันธุ์, "การบำบัดน้ำชะขยะมูลฝอย โดยวิธีการตกตะกอนด้วยเบนโทในต์," วิทยานิพนธ์ปริญญามหาบัณฑิต, คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเกษตรศาสตร์,
- [11] CarbonAree S, Mohammed J.K. Bashir, Sumathi S, Jun-Wei L, "An overview of heavily polluted landfill leachatetreatment using food waste as an alternative andrenewable source of activated carbon," *Process Safety and Environmental Protection*, vol. 98, pp 309-318, 2015.
- [12] ภัทรมาศ เทียมเงิน, "การศึกษาสภาวะที่เหมาะสมในการบำบัดน้ำชะมูลฝอยที่เสถียรด้วย กระบวนการตกตะกอนเกมีและการกรอง," วิทยานิพนธ์ปริญญามหาบัณฑิต, คณะ วิศวกรรมศาสตร์, 2553.
- [13] King, P.H., and Elassen, R.E, Integrated Solid Waste management, Consulting edition. Singapore: McGraw-Hill, 1993.
- [14] สุปรียา กลัคประเสริฐ, "ก๊าซ น้ำชะมูลฝอย และอัตราการย่อยสลายสารอินทรีย์ในถังจำลองการ ฝังกลบมูลฝอย," วิทยานิพนธ์ปริญญามหาบัณฑิต, คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเชียงใหม่, 2541.
- [15] G. H. Tchobanoglou, , Theisen, and S. A. Vilgil, , *Intergrated solid waste management*, International edition. Singapore: McGraw-Hill, 1993.
- [16] Chian, Dewalle, , E. S. K. Chianand, and F.B. Dewalle, "Sanitary landfill leachate and their treatment," *Journal. of Environmental Engineering Division*, vol. 102, pp. 411-431, 1976.
- [17] วิลาวัลย์ ฤทธิกาญจน์, "ประสิทธิภาพของหญ้าแฝกที่ปลูกด้วยเทคนิคแพลอยน้ำในการบำบัดน้ำ ชะมูลฝอย," วิทยานิพนธ์ปริญญาหมาบัณฑิต, สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม, จุฬาลงกรณ์มหาวิทยาลัย, 2552.
- [18] ธนนนท์ นุชเนตร, "การบำบัดน้ำชะมูลฝอยด้วยกระบวนการไฟฟ้าเคมี," วิทยานิพนธ์ปริญญา มหาบัณฑิต, คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเกษตรศาสตร์, 2552.

- [19] ปิ่นรัตน์ สิริพันธ์พงษ์, "การใช้น้ำหมักชีวภาพ และปฏิกิริยาเฟนตันบำบัคน้ำชะมูลฝอย," วิทยานิพนธ์ปริญญามหาบัณฑิต, คณะวิทยาศาสตร์, มหาวิทยาลัยสงขลานครินทร์, 2552.
- [20] อภิชน วัชเรนทร์วงศ์, "ไทเทเนียมใดออกไซด์แบบท่อนาโนสำหรับการบำบัดก๊าซมลพิษโดย กระบวนการโฟโตคะตะลิติก," คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเทคโนโลยีสุรนารี, 2555.
- [21] หทัยทิพย์ พันฤทธิ์ดำ, "การสังเคราะห์อนุภาคไทเทเนียมไดออกไซด์ระดับนาโนเพื่อฆ่าเชื้อราที่ ทำให้เกิดโรคใบร่วงของต้นยางพารา," วิทยานิพนธ์ปริญญามหาบัณฑิต, คณะ วิศวกรรมศาสตร์, มหาวิทยาลัยสงขลานครินทร์, 2556.
- [22] พิสิษฐ์พงษ์ หมื่นประเสริฐดี, "การใช้แสงร่วมกับตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์สลาย ของเสียโทลูอื่นในน้ำทิ้งระดับห้องปฏิบัติการ." วิทยานิพนธ์ปริญญาวิทยาศาสตร์ มหาบัณฑิต, สาขาเคมีประยุกต์, มหาวิทยาลัยสงขลานครินทร์, 2553.
- [23] สรรค์ จิตรใคร่ครวญ, "การทำความสะอาดโดยตัวเร่งปฏิกิริยาทางแสงด้วยไทเทเนียมได ออกไซด์," วารสารกรมวิทยาศาสตร์บริการ, น. 21-24,
- [24] L. Mansouri, L. Bousselmi and A. Ghrabi, "Degradation of recalcitrant organic contaminants by solar photocatalysis," *Water Science & Technology*, vol. 55, No. 12, pp. 119-125, 2007.
- [25] เสาวลักษณ์ บุญขอด, "ปฏิกิริยาโฟโตแคตะ ไลติกและพฤติกรรมการฆ่าเชื้อแบคทีเรียของฟิล์ม บาง ไทเทเนียม ไดออก ไซด์บนพอลิเมอร์," วิทยานิพนธ์ ปริญญาวิศวกรรมศาสตร มหาบัณฑิต, สาขาวิศวกรรมวัสดุ, มหาวิทยาลัยสงขลานครินทร์, 2554.
- [26] เชาวน์ ศรีเพชรดี, "การศึกษาการใช้ซิลิกาเจลขนาดนาโนชนิดมีรูพรุนที่สังเคราะห์จากเถ้าแกลบ เพื่อเสริมแรงในยางธรรมชาติโดยกระบวนการโซลเจล," วิทยานิพนธ์ปริญญาวิศวกรรม ศาสตรมหาบัณฑิต, สาขาวิชาวิทยาการและวิศวกรรมพอลิเมอร์ ภาควิชาวิทยาการและ วิศวกรรมวัสดุ, มหาวิทยาลัยศิลปากร, 2553.

- [27] ธรรมศักดิ์ โรจน์วิรุฬห์, "กุณสมบัติและจลนพลศาสตร์ของการกำจัดสารประกอบอินทรีย์ระเหย ของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่เตรียมโดยวิธีโซลเจล," วิทยานิพนธ์ปริญญา วิศวกรรมศาสตรดุษฏิบัณฑิต, สาขาวิศวกรรมสิ่งแวดล้อม ภาควิชาวิศวกรรมสิ่งแวดล้อม, มหาวิทยาลัยเกษตรศาสตร์, 2555.
- [28] ผกาแก้ว เกียรติสมาน, "แนวทางการกำจัดสารอินทรีย์ระเหยง่ายในอาคาร โดยใช้ไททาเนียมได ออกไซด์." วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต, สาขาวิศวกรรมสิ่งแวดล้อม บัณฑิตวิทยาลัย มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, 2553.
- [29] สิรพัฒน์ ประโทนเทพ, Scanning Probe Microscopy (online), ม.ป.ป., Available: www.nano.kmitl.ac.th/files/course/year22/92536209NanomaterialLaboratory1/Nanomate rialLab105NanobookSPM.pdf. (7 พศจิกายน 2558).
- [30] ศูนย์นาโนเทคโนโลยีแห่งชาติ, Atomic Force Microscope (AFM) (online), ม.ป.ป, Available: www.nanotec.or.th/th/?p=1229. (7 พศจิกายน 2558).
- [31] วิทยาลัยนาโนเทคโนโลยีพระจอมเกล้าลาดกระบัง, Atomic Force Microscope (AFM) (online), ม.ป.ป, Available: www.nano.kmitl.ac.th/index.php/tool/219-atomic-forcemicroscopeafm-.html.(7 พศจิกายน 2558).
- [32] Gwyddion (online), n.d, Available: www. gwyddion.net. (20 May 2016).
- [33] ศูนย์เครื่องมือวิทยาศาสตร์ และเทคโนโลยีมหาวิทยาลัยแม่ฟ้าหลวง, UV-Visible spectrophotometer(online), ม.ป.ป, Available: http://www.mfu.ac.th/center/stic/index.php/ component/k2/item/140-uv-visiblespectrophotometer. (7 พศจิกายน 2558).
- [34] อธิวัฒน์ พรหมจันทร์, "สมบัติของวัสคุโครงสร้างนาโนที่มีส่วนประกอบของไทเทเนียมได ออกไซด์ และซิลิกอนไดออกไซด์ด้วยวิธีไฮโดรเทอร์มอล," *วารสารบัณฑิตวิทยาลัย* พิชญทรรศน์, น. 143-148, ม.ค. - มิ.ย. 2557.

- [35] Wang, et al, "Photocatalytic Property of Fe Doped Anatase and Rutile TiO₂ Nanocrystal Particles Prepared by Sol–Gel Technique," *Applied Surface Science*. vol. 263, pp. 260-265, 2012.
- [36] Andreina Gariia and Juan Matos, "Photocatalytic Activity of TiO₂ on Activated Carbon Under Visible Light in the Photodegradation of Phenol," *The Open Materials Science Journal*, vol. 4, pp. 2-4, 2010.
- [37] Guido Del Moro, et al., "Comparison of UV/H₂O₂ based AOP as an end treatment or integrated with biological degradation for treating landfill leachates," *Chemical Engineering Journal*, vol .213, pp. 133-137, 2013.
- [38] R. Poblete, E. Otal, L.F. Vilches, J. Vale, C. Fernández-Pereira, "Photocatalytic degradation of humic acids and landfill leachate using a solid industrial by-product containing TiO₂ and Fe," *Applied Catalysis B: Environmental*, vol. 102, pp. 172-179, 2011.
- [39] D. E. Meeroff, F Bloetscher, D.V. Reddy, Franc, O Gasnier, S Jain, A McBarnette, H Hamaguchi, "Application of photochemical technologies for treatment of landfill leachate," *Journal of Hazardous Materials*, vol. 209-210, pp 299-307, 2012.
- [40] O Rojviroon, T Rojviroon, S Sirivithayapakorn, "Removal of Color and Chemical Oxygen Demand from Landfill Leachate by Photocatalytic Process with AC/TiO₂," *Energy Procedia*, vol. 79, pp. 536-541, 2015.
- [41] M.N. Vineetha, M Matheswaran, K.N. Sheeba, "Photocatalytic colour and COD removal in the distillery effluentby solar radiation," *Solar Energy*, vol. 91, pp. 368-373, 2013.
- [42] S. Renoua, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, "Landfill leachate treatment: Review and opportunity," *Journal of Hazardous Materials*, vol. 150, pp. 468-493, 2008.

- [43] O. Primo, M. J. Rivero, I Ortiz, "Photo-Fenton process as an efficient alternative to the treatment of landfill leachates," *Journal of Hazardous Materials*, vol. 153, pp. 834-842, 2008.
- [44] E. M. R. Rocha, V. J. P. Vilar, A. Fonseca, I. Saraiva, R. A. R. Boaventura, "Landfill leachate treatment by solar-driven AOPs," *Solar Energy*, vol. 85, pp. 46-56, 2011.
- [45] V. J. P. Vilar, E. M.R. Rocha, F. S. Mota, A. Fonseca, "Treatment of a sanitary landfill leachate using combined solar," *water research*, vol. 45, pp. 2647-2658, 2011.
- [46] Hua, G. Zenga, G. Chena, H. Donga, Y. Liua, J. Wana, A. Chenc, Z. Guoa, M.Yana, H. Wua,
 Z. Yua, "Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO₂nanoparticles," *Journal of Hazardous Materials*, vol. 301, pp. 106-118, 2016.
- [47] Q. Zhang, B. H. Tian, X. Zhang, A. Ghulam, C. R. Fang, R. He, "Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants," *Waste Management*, vol. 33, pp. 2277-2286, 2013.
- [48] S.H. Mohamed, H.S. Wibawa, J.G. Edgar, M. Guido, "A novel TiO₂ composite for photocatalytic wastewater treatment," *Journal of Catalysis*, vol. 310, pp. 75-83, 2014.
- [49] C.-P. Lin, H. Chen, A. Nakaruk, P. Koshy, and C. C. Sorrell, "Effect of Annealing Temperature on the Photocatalytic Activity of TiO₂ Thin Films," *10th Eco-Energy and Materials Science and Engineering*, vol. 34, pp. 627-636, 2013.

- [50] Y. Metin, D. Tuncay, Y. Serdar, Y. Melis, T. Mustafa, and C. Erdal, "Fabrication and characterization of nanostructured anatase TiO₂ films prepared by electrochemical anodization and their photocatalytic properties," *Journal of Alloys and Compounds*, vol. 651, pp. 59-71, 2015.
- [51] Y. Pin-Chuan, H. Shih-Tse, L. Chi-Wen, and H. Dao-Hong, "Photocatalytic destruction of gaseous toluene by porphyrin-sensitized TiO₂ thin films, *Journal of the Taiwan Institute of Chemical Engineers*, vol. 42, pp. 470-479, 2011.
- [52] W. Chung-Yi, L. Yuan-Ling, L. Yu-Shiu, L. Chen-Jui, and W. Chien-Hou, "Thicknessdependent photocatalytic performance of nanocrystalline TiO₂ thin films prepared by solgel spin coating," *Applied Surface Science*, vol. 280, pp. 737-744, 2013.
- [53] L. B. Reuterglrdh and M. Langphasuk, "Photocatalytic Decolourization of Reative Azo Dye : A Comparison between TiO₂ and CdS Photocatysis." *Chemosphere*, vol. 35, pp. 585-596, 1997.
- [54] C. Jia, Y. Wang, C. Zhang, Q. Qin, "UV-TiO₂ Photocatalytic Degradation of Landfill Leachate," *Water Air Soil Pollut*, vol. 217, pp. 375-385, 2011.
- [55] M.T. Samadi, Z.E. Kashitarash, K. Naddafi, "Comparison The Efficacy Of Fenton And "nZVI + H₂O₂" Processes In Municipal Solid Waste Landfill Leachate Treatment (Case Study: Hamadan Landfill Leachate)," *Journal of Environmental Research*, vol. 7, pp. 187-194, 2013.

[56] A. P' Toor, A. Verma, C. K. Jotshi, P. K. Bajpai, V. Singh, "Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO₂ in a shallow pond slurry reactor," *Dyes and Pigments*, vol. 68, pp. 53-60, 2006.

เวลา (นาที) 🛛		ความเข้มข้น COI) เริ่มต้น 320 mg/L	
	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	320	320	320	320
30	320	280	240	280
60	320	280	240	280
90	320	240	240	267
120	320	240	240	267
150	320	240	240	267
180	240	240	240	240

ตารางที่ ก.1 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวน 3 ชั้น ที่ความ เข้มข้นเริ่มต้น 320 mg/L

ตารางที่ ก.2 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวน 3 ชั้นที่ความ เข้มข้นเริ่มต้น 640 mg/L

		ความเข้มข้น COD เริ่มต้น 640 mg/L				
เวลา (นาท) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย		
0	640	640	640	640		
30	560	560	560	560		
60	560	560	560	560		
90	560	560	480	533		
120	500	580	480	520		
150	460	560	480	500		
180	560	911 500 57	440	500		

		ความเข้มข้น COD	เริ่มต้น 720 mg/L	
1.19.1 (17.1M) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	720	720	720	720
30	720	720	720	720
60	640	640	640	640
90	640	640	640	640
120	600	640	560	600
150	540	640	560	580
180	500	580	480	520

ตารางที่ ก.3 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวนชั้น 3 ชั้นที่ความ เข้มข้นเริ่มต้น 720 mg/L

ตารางที่ ก.4 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวน 3 ชั้น ที่ความ เข้มข้นเริ่มต้น 960 mg/L

เวลา (นาที) -		ความเข้มข้น COD เริ่มต้น 960 mg/L				
	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย		
0	960	960	960	960		
30	960	960	960	960		
60	900	960	960	940		
90	880	920	960	920		
120	900	900	900	900		
150	860	860	800	840		
180	740	191280095	800	780		

เวลา (นาที) -		ความเข้มข้น COE) เริ่มต้น 320 mg/L	
	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	320	320	320	320
30	320	280	240	280
60	260	260	260	260
90	240	240	240	240
120	160	160	280	200
150	160	200	240	200
180	160	160	240	187

ตารางที่ ก.5 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวน 4 ชั้นที่ความ เข้มข้นเริ่มต้น 320 mg/L

ตารางที่ ก.6 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวนชั้น 4 ชั้น ที่ความ เข้มข้นเริ่มต้น 640 mg/L

เวลา (นาที)	ความเข้มข้น COD เริ่มต้น 640 mg/L				
	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย	
0	640	640	640	640	
30	560	560	560	560	
60	560	560	480	533	
90	560	560	480	533	
120	480	480	480	480	
150	480	400	440	440	
180	480	9/11/400/51	440	440	

เวลา (นาที) -		ความเข้มข้น COI) เริ่มต้น 720 mg/L	
	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	720	720	720	720
30	720	720	720	720
60	640	640	640	640
90	560	660	640	620
120	560	640	600	600
150	540	540	480	520
180	500	500	500	500

ตารางที่ ก.7 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวน 4 ชั้น ที่ความ เข้มข้นเริ่มต้น 720 mg/L

ตารางที่ ก.8 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวน 4 ชั้นที่ความ เข้มข้นเริ่มต้น 960 mg/L

		ความเข้มข้น COD เริ่มต้น 960 mg/L				
เวลา (นาท) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย		
0	960	960	960	960		
30	960	960	960	960		
60	940	940	940	940		
90	940	880	880	900		
120	880	880	880	880		
150	800	800	800	800		
180	800	911 760 5	720	760		

		ความเข้มข้น COE) เริ่มต้น 320 mg/L	
1.19.1 (17.1M) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	320	320	320	320
30	240	280	320	280
60	240	240	240	240
90	240	240	160	213
120	240	240	160	213
150	240	200	160	200
180	140	140	140	140

ตารางที่ ก.9 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวนชั้น 5 ชั้นที่ความ เข้มข้นเริ่มต้น 320 mg/L

ตารางที่ ก.10 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวน 5 ชั้น ที่ความ เข้มข้นเริ่มต้น 640 mg/L

		ความเข้มข้น COD เริ่มต้น 640 mg/L				
เวลา (นาท) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย		
0	640	640	640	640		
30	520	480	560	520		
60	560	520	480	520		
90	480	480	480	480		
120	420	480	480	460		
150	400	440	480	440		
180	400	191240095	460	420		

(2000 (2107)	ความเข้มข้น COD เริ่มต้น 720 mg/L			
1101(NIM) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	720	720	720	720
30	700	700	700	700
60	720	700	620	680
90	620	620	560	600
120	620	560	560	580
150	480	480	480	480
180	440	400	480	440

ตารางที่ ก.11 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวน 5 ชั้นที่ความ เข้มข้นเริ่มต้น 720 mg/L

ตารางที่ ก.12 การกำจัด COD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวนชั้น 5 ชั้นที่ความ เข้มข้นเริ่มต้น 960 mg/L

	ความเข้มข้น COD เริ่มต้น 960 mg/L				
เวลา (นาท) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ເລລີ່ຍ	
0	960	960	960	960	
30	960	920	940	940	
60	940	940	880	920	
90	880	840	800	840	
120	880	840	800	820	
150	740	800	800	780	
180	720	780 510	720	740	

การติดตามการเปลี่ยนแปลงความเข้มข้น BOD และ VFA ด้วยกระบวนการ โฟโคะตะลิติกร่วมกับตัวเร่งปฏิกิริยา TiO₂

	ความเข้มข้น BOD เริ่มต้น 50 mg/L			
เวลา (นาท) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	51	51	51	51
30	60	45	45	50
60	42	42	36	40
90	70	60	65	65
120	66	40	45	50
150	96	96	96	96
180	75	74	72	74

ตารางที่ ข.1 การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 50 mg/L

ตารางที่ ข.2 การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 80 mg/L

(2000 (2107)	ความเข้มข้น BOD เริ่มต้น 80 mg/L				
1.101 (121M) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ເລລີ່ຍ	
0	78	82	81	80	
30	90	80	114	95	
60	E 112	102	114	110	
90	84	90	138	104	
120	100	101	108	103	
150	90 90	78	96	88	
180	108	9/11/10/921	120	110	

	ความเข้มข้น BOD เริ่มต้น 110 mg/L			
เวลา (นาท) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย
0	102	99	102	101
30	78	78	114	90
60	96	144	90	110
90	78	84	140	101
120	96	102	108	104
150	105	105	102	99
180	138	102	138	126

ตารางที่ ข.3 การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO₂ เคลือบบน Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 110 mg/L

ตารางที่ ข.4 การติดตามการเปลี่ยนแปลงความเข้มข้น BOD ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวนชั้น 5 ชั้นที่ความเข้มข้นเริ่มต้น 140 mg/L

	ความเข้มข้น BOD เริ่มต้น 140 mg/L			
เวลา (นาพ) -	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ເລລີ່ຍ
0	140	140	140	140
30	86	133	108	109
60	E 93	98	96	96
90	140	112	125	126
120	187	112	148	150
150	140	140	140	140
180	171	9/11/15495	160	162

(ນາ ທີ ່)	ความเข้มข้น VFA เริ่มต้น mg/L as CaCO3			3
1901(MIN) -	600	970	985	1,110
0	600	970	985	1,110
180	540	900	920	1,040
		A A A A A A A A A A A A A A A A A A A		

ตารางที่ **ข.5** การติดตามการเปลี่ยนแปลงความเข้มข้น VFA ของน้ำชะขยะด้วย TiO₂ เกลือบบน Petri Dish จำนวนชั้น 5

ร**ูปที่ ค.1** อุปกรณ์ X-ray diffraction (XRD) รุ่น Bruker model D8 Advance สภาวะที่ทำการวิเคราะห์ : Cu Kα radiation at scan rate of 0.02° S⁻¹

รูปที่ ค.2 อุปกรณ์ UV-Vis spectrometer ยี่ห้อ Perkin Elmer รุ่น Lambda 650 ที่ทำการวิเคราะห์ : ความยาวคลื่นในช่วง 290–800 nm

สภาวะ

รูปที่ ค.4 อุปกรณ์วัดความเข้มแสง ยี่ห้อ UV-Light Meter Model UV-340

รูปที่ ค.5 ปีเปตอัตโนมัติ ยี่ห้อ Engineered for Excellence BIOHIT

ดณะกรรมการสมาคมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

ผู้ทรงกุณวุฒิกิตติมศักดิ์	ศ.คร. ธงชัย พรรณสวัสดิ์	
ที่ปรึกษากิตติมศักดิ์	รศ.คร. วีระพงษ์ แพสุวรรณ	
	คร. เกษมสันต์ จิณฉวาโส	
	คร.พสุ โลหารชุน	
	คร. รวีวรรณ ภูริเคช	
	คร. ทวีศักดิ์ กออนันตกูล	
	นายนิรุจน์ อุทธา	
	คร. กมล ตรรกบุตร	
	นายเทวินทร์ วงศ์วานิช	
	นายอิสระ ว่องกุศลกิจ	
	ศ.คร. จงรักษ์ ผลประเสริฐ	
	คร. เกษมสันดิ์ สุวรรณรัต	
	นางปราณี พันธุมสินชัย, P.E.	
ที่ปรึกษาคณะกรรมการอำนวยการ	นายวิเชียร อุษณาโชติ	
	นายพิพิธ หงย์จินดา	
	นายสูพจน์ โล่วัชรินทร์	
	นายพิสิฐ พุฒิไพโรจน์	
นายก	คร. ประเสริฐ ตปนี่ยางกูร	
อุปนายก	รศ.คร. วันเพ็ญ วิโรจนกูฎ	
	รศ.คร. สุทิน อยู่สุข	
กรรมการกลาง	รศ.คร. วราวุช เสือดี	
	รศ.คร. ชาติ เจียมใชยศรี	
	รศ.คร. กฤติยา เลิศโภกะสมบัติ	
	ผศ.คร. ศรัณย์ เตชะเสน	
ประธานฝ่ายการเงิน	รศ.คร. วิษณุ มีอยู่	
ประธานฝ่ายวิชาการ	รศ.คร. พวงรัตน์ ขจิตวิชยานุกูล	
ประธานฝ่ายกิจกรรม	ผศ.คร. คลเคช ตั้งตระการพงษ์	
เลขาธิการ	นายโกวิทย์ เอื้อศิริพันธ์	

A สมาดบวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

ผู้ดำเนินรายกา	ร : รศ.ดร. พรทิพย์ ศรีแดง	
13.00-13.20 12R3-07	ผลของกรดเอทิลีนไดเอมินเททระอะซีติกเอซิด (อีดีทีเอ) และกรดในตริโลไทรอะซีดิกเอซิด (เอนทีเอ) ต่อการกำจัดแคดเมียมในน้ำด้วยหญ้าเนเปียร์แคระ มนทิรา สุขเจริญ และ พันธวัศ สัมพันธ์พานิช	151
13.20-13.40 12R3-08	การกำจัดฟลูออแรนทีนค้วยกระบวนออกซิเดชันขั้นสูง โดยใช้ UV/H2O2 และ 3% Ag-TiO2/UV <u>ใยทิพย์ ใจเอื้อย</u> และ สัญญา สิริวิทยาปกรณ์	153
13.40-14.00 12R3-09	การบำบัดน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติกโดยใช้ไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา ธรรมศักดิ์ โรจน์วิรุพห์ <u>ปรียานุช พัฒนการค้า</u> อรวรรณ โรจน์วิรุพห์ และ สัญญา สิริวิทยาปกรณ์	155
14.00-14.20 12R3-10	การกำจัด 4-กลอโรฟีนอลด้วยเอนไซม์แลกเคสถึ่งบริสุทธิ์ <u>ณัฐกฤตา เสนคำสอน</u> และ กรรณิกา รัตนพงศ์เลขา พักรับประทานอาหารว่าง และการนำสาเลยลงามแบบโปสเตอร์	157
ผู้ดำเนินรายการ	ร : อ.ดร. ดาว สุวรรณแสง จั่นเจริญ	
14.40-15.00 12R3-11	ผลของแสงต่อประสิทธิภาพการบำบัดแอมโมเนียในโตรเจนโดยระบบฟิล์มชีวภาพชนิดสาหร่าย <u>เมษามาศ ไชยรุ่งเรือง</u> และ โสมนัส สมประเสริฐ	159
15.00-15.20 12R3-12	การใช้โอโซนเพื่อควบคุมสาหร่ายในกระบวนการผลิตน้ำประปา <u>สุคารัตน์ สิงหาเพ็ญ</u> และ ภัชรากรณ์ สุวรรณวิทยา	161
15.20-15.40 12R3-13	การประเมินค่าบีโอดีและซีโอดีในมาตรฐานน้ำทิ้งเฉพาะประเภท สำหรับอุตสาหกรรมเชื่อและกระดาษ <u>พิษณุ ปันนะราชา</u> เสรีย์ ดู้ประกาย และ นันท์นภัสร อินขึ้ม	163
	ห้องประชุม 4 : จรัสเมือง 2 (ชั้น 2)	
ผู้ดำเนินรายการ	ร : รศ.ดร. ปฏิภาณ ปัญญาพลกุล	
09.20-09.40 12R4-01	การตรวจวัคระคับเสียงเฉลี่ยและปริมาณเสียงสะสมที่ผู้ปฏิบัติงานได้รับจากการผลิตสินก้าหนึ่ง ตำบลหนึ่งผลิตภัณฑ์ กรณีศึกษา: ไม้ทพธาโร จังหวัดตรัง บุชนาฏ นิลออ และ กมลวรรณ โชติพันธ์	165
09.40-10.00 12R4-02	การตรวจวัดฝุ่นรวมและเสียงในโรงงานทอศ้าแห่งหนึ่งในจังหวัดนกรปฐม <u>นวพล ชุดิชาติ</u> และ วิภาดา สนองราษฎร์	167
10.00-10.20 12R4-03	การดูดชับสารโพลิไซคลิกอะโรมาติกไฮโครคาร์บอน ในดินที่มีสถาวะที่เป็นกรดและค่าง <u>พิมพ์พิสุทธิ์ ปัจจัย</u> และ สัญญา สิริวิทยาปกรณ์	169
10.20-11.00	พักรับประทานอาหารว่าง	
การประชุมวิช	าการสิ่งแวดล้อมแห่งชาติดรั้งที่ 15 X วันที่ 11-13 พฤษภาคเ	1 2559

สมาคมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

12R3-09

การบำบัดน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติกโดยใช้ ไทเทเนียมไดออกไซด์เป็นตัวเร่งปฏิกิริยา

Treatment of Leachate Wastewater by Using TiO, as

Photocatalyst

ธรรมศักดิ์ โรจน์วิรุพห์^{1*} <u>ปรียานุช พัฒนการก้า</u>² อรวรรณ โรจน์วิรุพห์³ และ สัญญา สิริวิทยาปกรณ์⁴ Thammasak Rojviroon^{1*} <u>Preeyanuch Phatthanakamkha</u>² Orawan Rojviroon³ and Sanya Sirivitthayapakom⁴ ^{1*}อาจารย์ ; ²นิสิตบัณฑิคศึกษา ; ³ผู้ช่วยศาสตราจารย์ คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมโยธา สาขาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงกลธัญบุรี ปทุมธานี 12110; ⁴รองศาสตราจารย์ ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ 10900; ^{*}โทรศัพท์ : 02-549-3410, โทรสาร : 02-549-3418, E-mail : thammasak@rmutt.ac.th

บทคัดย่อ

งานวิจัยนี้มุ่งเน้นศึกษาประสิทธิภาพการบำบัดด้วยกระบวนการ โฟโตกะตะลิติกในน้ำชะมูลฝอย ที่มีอัตราการย่อย สลายทางชีวภาพก่อนข้างต่ำ คือ บิโอดี, ซีโอดี ระหว่าง 0.1-0.15 โดยทำการเปรียบเทียบประสิทธิภาพการบำบัดซีโอดีในน้ำชะ มูลฝอยโดยใช้ตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์แบบฟิล์มบางที่เตรียมโดยวิธีโซลเจลเกลือบลงบน Petri dish 3, 4 และ 5 ชั้น ตามลำคับ และทำการวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยาข้างต้นด้วยอุปกรณ์ต่างๆ ได้แก่ XRD, UV-Vis spectrometer และ AFM ผลการวิเคราะห์ลักษณะทางกายภาพของสามารถเตรียมด้วเร่งปฏิกิริยาที่มีโครงสร้างชนิดอนาเทส ขนาด ช่องว่างพลังงาน เท่ากับ 3.26 eV และมีขนาดอนุภาคอยู่ระหว่าง 25-200 nm ในการวิเคราะห์ประสิทธิภาพการกำจัด COD ในน้ำ ชะมูลฝอยด้วยกระบวนการดังกล่าว ซึ่งเตรียมความเข้มข้น COD เริ่มต้นประมาณ 320, 640, 720 และ 960 mg·L⁻¹ พบว่า สามารถกำจัด COD ในน้ำชะมูลฝอยโดยมีประสิทธิภาพการกำจัด เท่ากับ 25.00, 41.50 และ 52.65% สำหรับตัวเร่ง ปฏิกิริยาที่มีจำนวนชั้นการเคลือบ 3, 4 และ 5 ชั้น ตามลำดับ

คำสำคัญ : กระบวนการออกซิเคชันขั้นสูง; โซลเจล; แสงอัลตราไวโอเลต; หลุมฝังกลบ

Abstract

This study investigated the performance of photocatalytic process in the treatment of landfill leachate with a very low biodegradability ratio (BOD_5/COD) of 0.1-0.15. This study compared the COD removal efficiencies of titanium dioxide (TiO_2) thin films photocatalyst coated on the surfaces of petri dish that prepared by sol-gel dip coating method with three different numbers of coating layer including 3, 4 and 5 layers, respectively. The physical properties of TiO_2 photocatalyst were evaluated by XRD, UV-Vis spectrometer and AFM. The analysis results indicated that the crystalline structure of TiO_2 on the coated surface was anatase phase with the band gap energy to 3.26 eV and the particle diameters were ranging from 25-200 nm. For the photocatalytic activity tests, the initial concentrations of COD were approximately 320, 640, 720 and 960

การประชุมวิชาการสิ่งแวคล้อมแห่งชาติครั้งที่ 15

1

วันที่ 11-13 พฤษภาคม 25

<u>ว่</u> 2 สมาดมวิศวกรรมสิ่งแวดล้อมแท่งประเทศไทย

 $mg L^{-1}$. The results showed the net photocatalytic degradation efficiency of landfill leachate at 180 minutes were 25.00%, 41.50% and 52.65% for 3, 4 and 5 layers coating, respectively.

Keywords: Advanced oxidation processes; Sol-gel; Dip-coating; UVA; Landfill leachate

บทนำ

จากรูปแบบและเทคโนโลยีในการจัดการมูลฝอยชุมชนในประเทศไทยที่ผ่านมาตั้งแต่อดีตจนถึงปัจจุบัน พบว่า การ จัดการมูลฝอยชุมชนด้วยวิธีการฝังกลบซึ่งวิธีการนี้เป็นที่นิยมในการจักการขยะมูลฝอย เนื่องจากเป็นวิธีที่มีค่าใช้จ่ายในการ ดำเนินการในด้านต่างๆ ไม่สูงมาก แต่วิธีการดังกล่าวส่งผลให้เกิดปัญหาที่ตามมาหลังเกิดการฝังกลบ ซึ่งเกิดจากกระบวนการ ย่อยสลายทางชีวภาพภายในหลุมฝังกลบรวมถึงการชะล้างมูลที่เกิดปริมาณน้ำฝนที่ตกลงบนหลุมฝังกลบ ทำให้เกิดน้ำชะมูลฝอย ซึ่งมีความสกปรกและสารปนเปื้อนค่อนข้างสูง [1-3] โดยวิธีการบำบัดน้ำชะมูลฝอยส่วนมากที่พบจะใช้ระบบบำบัดทางชีวภาพ [4-5] แต่ด้วยข้อจำกัดของกระบวนการทางชีวภาพที่ไม่สามารถกำจัดสารประกอบอินทรีย์เชิงซ้อนหรือสารที่มีเสถียรภาพและ ความคงตัวสูงที่อยู่ในน้ำชะมูลฝอยได้ [6]

ดังนั้นจึงได้มีการประยุกต์ใช้กระบวนการขั้นสูงในการบำบัดน้ำชะมูลฝอย อาทิเช่น เฟนตัน, โอโชน และ เมมเบรน เป็นต้น [7-11] แต่เนื่องจากกระบวนการข้างต้นมีข้อจำกัดในด้านความยุ่งยาก และอุปกรณ์ในการติดตั้งระบบ รวมทั้งค่าใช้จ่าย ในการเดินระบบก่อนข้างสูง ทั้งนี้งานวิจัยนี้ได้มีการนำกระบวนการโฟโตกะตะลิติกมาประยุกต์ในการบำบัดน้ำชะมูลฝอย ซึ่ง ใช้แสงอัลตราไวโอเลตร่วมกับตัวเร่งปฏิกิริยาเพื่อใช้บำบัด [12-18] นอกจากนี้กระบวนการคังกล่าวสามารถประยุกต์ใช้กับ แหล่งกำเนิดแสงตามธรรมชาติ รวมทั้งอุปกรณ์และขั้นตอนในการเดินระบบที่ไม่ชับซ้อน ทำให้กระบวนการดังกล่าวเป็น ทางเลือกหนึ่งซึ่งมีศักยภาพในการบำบัดน้ำชะมูลฝอยและสามารถลดข้อจำกัดดังกล่าวข้างต้นได้ [19-20]

อุปกรณ์และวิธีการ

การเตรียมตัวเร่งปฏิกิริยา TiO,

เตรียมตัวเร่งปฏิกิริยา TiO₂ ด้วยวิธีโซลเจล โดยใช้สารตั้งต้นไทเทเนียมเตตระไอโซโพรพรอกไซด์ (Ti[OCH(CH3)2]4, TTIP) ผสมกับละลายไอโซโพรพานอล (C₃H₄O) ในอัตราส่วน 1:15 โดยปริมาตร ปรับ pH ให้อยู่ในช่วง 2-3 กวนผสมในสภาวะที่ไม่มีออกซิเงนโดยใช้การไล่ด้วยก๊าซไนโตรเจนเป็นเวลา 1 ชั่วโมง นำไปแช่เย็นทิ้งไว้ที่อุณหภูมิ 4 องศา เซลเซียส เป็นเวลา 24 ชั่วโมง [16] ในส่วนของการเคลือบตัวเร่งปฏิกิริยาลงบน Petri dish ทำโดยใช้วิธีจุ่มเคลือบ (Dip coating) ในอุปกรณ์เคลือบตัวเร่งปฏิกิริยาดังรูปที่ 1 ที่จำนวนชั้นการเคลือบ เท่ากับ 3, 4 และ 5 ชั้น ตามลำคับ

การวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา TiO,

นำตัวเร่งปฏิกิริยาที่เตรียมไปวิเคราะห์ลักษณะทางกายภาพด้วยอุปกรณ์ต่างๆ ตามพารามิเตอร์ต่างๆ ดังตารางที่ 1

พารามิเตอร์	อุปกรณ์วิเคราะห์	รุ่น
โครงสร้างผลึก	X-ray Diffractometer	Bruker model D8 Advance
ช่องว่างพลังงาน	[°] UV-Vis spectrometer	Lambda 650 Perkin Elmer
ขนาดอนุภาค และ ค่าความขรุขระเฉลี่ย (RMS)	Atomic Force Microscopy	Asylum Research MFP-3DBIO
พื้นที่ผิวปรากฏ	Gwyddion Software	version 2.22
	9	
การประชบวิชาการสิ่งแวดล้อบแห่งชาติครั้งที่ 1	5 2	วันที่ 11-13 พกษกาดบ 255

ตารางที่ 1 พารามิเตอร์และอุปกรณ์วิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา TiO

การประชุมวิชาการสิ่งแวคล้อมแห่งชาติกรั้งที่ 15 3

วันที่ 11-13 พฤษภาคม 25
🜙 สมาดมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

ผลการทดลองและวิจารณ์

42

ลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทนียมไดออกไซด์

ผลการวิเคราะห์ลักษณะผลึกของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ด้วยอุปกรณ์ XRD แสดงให้เห็นถึงลักษณะ โครงสร้างผลึกของตัวเร่งปฏิกิริยาซึ่งมีลักษณะ โครงสร้างเป็นผลึกอนาเทส ดังรูปที่ 3 พบว่า การเลี้ยวเบนของรังสีเอ็กซ์จะแสดง ค่าสะท้อนกลับที่มุมตกกระทบ 2 theta เท่ากับ 25.2° ซึ่งการเลี้ยวเบนดังกล่าวมีโครงสร้างผลึกแบบอนาเทส 100 % ซึ่งผล การศึกษาโครงสร้างผลึกของตัวเร่งปฏิกิริยาที่เตรียมเป็นไปในทิศทางเดียวกันกับการศึกษางานวิจัยของ Lin C.-P. (2013) [21] ซึ่งสามารถเตรียมตัวเร่งปฏิกิริยา TiO₂ ที่มีโครงสร้างผลึกแบบอนาเทส ได้ที่อุณหภูมิระหว่าง 400-600 °C ซึ่งเป็นอุณหภูมิที่ ใกล้เคียงกับงานวิจัยนี้ และจากการวิเคราะห์ด้วย UV-Vis spectrometer ตัวเร่งปฏิกิริยา TiO, มีช่องว่างพลังงาน เท่ากับ 3.26 eV

สำหรับการวิเคราะห์ลักษณะทางกายภาพของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซค์ด้วยอุปกรณ์ AFM ผลการวิเคราะห์ แสดงให้เห็นลักษณะพื้นผิว, ขนาดอนุภาค, การกระจายตัว และค่าความขรุขระเฉลี่ย (RMS) ของตัวเร่งปฏิกิริยาที่เคลือบบน Petri dish ในแต่ละชั้น รวมไปถึงพื้นที่ผิวปรากฏสามารถวิเคราะห์ได้โดยใช้โปรแกรม Gwyddion Software version 2.22 ดัง แสดงในรูปที่ 4 และตารางที่ 3

สมาดมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

44

ø	6								

v	TiO ₂ ที่เคลือบบนตัวกลาง						
ลกษณะทางกายภาพ	3 ชั้ น	4 ชั้น	5 ชั้น				
โครงสร้างผลึก		อนาเทส					
ช่องว่างพลังงาน (eV)		3.26					
ขนาดอนุภาก (nm)	25-200	10-50	40-55				
RMS (nm)	7.50	1.41	1.47				
พื้นที่ผิวปรากฏ (m²·m-²) ●	1.23	1.03	1.01				
น้ำหนักรวม TiO₂ บนพื้นผิว (g·m²)●	0.09	0.12	0.15				
พื้นที่ผิวปรากฏต่อน้ำหนักทั้งหมด (m²⋅g⁻¹) ⁰ /®	13.67	8.58	6.73				

ตารางที่ 3 ลักษณะทางกายภาพของตัวเร่งปฏิกิริยา

จากผลการวิเคราะห์ลักษณะทางกาขภาพของตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซค์ แสดงให้เห็นว่าตัวเร่งปฏิกิริยา ไทเทเนียมไดออกไซค์แบบฟิล์มบางที่เตรียมได้ มีคุณสมบัติที่เหมาะสม สามารถนำมาใช้เป็นตัวเร่งปฏิกิริยาในกระบวนการโฟ โดคะตะลิดิกได้ โดยมีลักษณะโครงสร้างผลึกชนิดอนาเทส มีช่องว่างแถบพลังงานต่ำ เป็นฟิล์มบางที่มีขนาดอนุภาคระดับนาโน [22-23] นอกจากนี้จากผลการศึกษา พบว่า จำนวนชั้นของการเคลือบตัวเร่งปฏิกิริยาลงบนพื้นผิวส่งผลให้ขนาดของอนุภาค ไทเทเนียมไดออกไซค์บนผิวตัวกลางมีความคงตัวมากขึ้น และมีช่วงความแตกต่างของขนาดอนุภาคน้อยลง แสดงให้เห็นจาก ขนาดอนุภาคของไทเทเนียมไดออกไซค์ของตัวเร่งปฏิกิริยาที่มีการเคลือบผิว จำนวน 5 ชั้น มีขนาดอนุภาคระหว่าง 40-55 nm และเมื่อพิจารณาพื้นที่ผิวปรากฏต่อน้ำหนักของตัวเร่งปฏิกิริยาที่เคลือบลงบนผิวตัวกลาง พบว่า ขนาดของพื้นที่ผิวปรากฏมี แนวโน้มลดลงเมื่อจำนวนชั้นของการเคลือบตัวเร่งปฏิกิริยาเพิ่มขึ้น แสดงให้เห็นถึงขนาด และการกระจายตัวของตัวเร่งปฏิกิริยา บนพื้นผิวตัวกลางมีความสม่ำเสมอมากขึ้น

การบำบัดน้ำชะมูลฝอยด้วยกระบวนโฟโตคะตะลิติก

จากศึกษาการบำบัดน้ำชะมูลฝอยด้วยกระบวนการ โฟโตคะตะลิติกภายได้แสง UVA ที่ความเข้มแสง 1,000 μW·cm² พบว่า เมื่อเวลาผ่านไป 180 นาที ประสิทธิภาพการกำจัดซีโอดีในน้ำชะมูลฝอยที่มีความเข้มข้นเริ่มด้น 4 ก่าโดยประมาณเท่ากับ 320, 640, 720 และ 920 mg·L⁻¹ ตามลำดับ โดยใช้ตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์ที่มีการเคลือบผิวบนตัวกลาง จำนวน 3, 4 และ5 ชั้น ตามลำดับ ซึ่งผลการศึกษาการเปลี่ยนแปลงก่าซีโอดีในน้ำชะมูลฝอยที่ความเข้มข้นต่างๆ แสดงดังรูปที่ 5 สำหรับ ประสิทธิภาพการกำจัดซีโอดีในน้ำชะมูลฝอย พบว่า กระบวนการ โฟโตคะตะลิติกโดยใช้ตัวเร่งปฏิกิริยาที่เตรียมขึ้นสามารถ กำจัดซีโอดีในน้ำชะมูลฝอยโดยมีประสิทธิภาพการกำจัดสูงสุด เท่ากับ 25.00, 41.50 และ 52.65% สำหรับในน้ำชะมูล ฝอยที่มีความเข้มข้นเริ่มค้น เท่ากับ 320 mg·L⁻¹ โดยตัวเร่งปฏิกิริยาที่มีจำนวนชั้นการเคลือบ 3, 4 และ 5 ชั้น ตามลำดับ แสดง ดังรูปที่ 5-6

สำหรับงลนพลศาสตร์ของกระบวนการกำงัคซีโอคีน้ำชะมูลฝอยด้วยปฏิกิริยาโฟโตกะตะลิติก สามารถอธิบายโดย สมการปฏิกิริยาอันคับศูนย์ ดังสมการที่ (1)

$$\frac{\mathrm{d}\mathbf{C}}{\mathrm{d}\mathbf{t}} = -\mathbf{k}$$

การประชุมวิชาการสิ่งแวคล้อมแห่งชาติครั้งที่ 15

วันที่ 11-13 พฤษภาคม 2

(1)

าน สมาดมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

เมื่อพิจารณาความเข้มข้นของซีโอดีที่ถูกกำจัด เมื่อเวลาผ่านไป 180 นาทีแรก สามารถคำนวณหาค่าคงที่การ เกิดปฏิกิริยาอันคับศูนย์จากสมการดังกล่าวได้ ซึ่งมีค่าเท่ากับ 1.33 mol.L^{-1.}min⁻¹ ในทุกชุดการทดลอง ผลการศึกษาแสดงให้เห็น ว่าประสิทธิภาพในการกำจัดซีโอดีของกระบวนการดังกล่าวจะมีค่าสูงขึ้นโดยแปรผันตรงกับจำนวนชั้นของการเคลือบตัวเร่ง ปฏิกิริยาบนผิวตัวกลาง ทั้งนี้เนื่องจากปริมาณไทเทเนียมไดออกไซด์ที่อยู่บนผิวตัวกลาง การกระจายตัวอย่างสม่ำเสมอ ขนาด และความกงตัวของอนุภาคตัวเร่งปฏิกิริยาบนผิวตัวกลาง

สมาดมวิศวกรรมสิ่งแวดล้อมแห่งประเทศไทย

สรุป

การศึกษานี้สามารถเตรียมตัวเร่งปฏิกิริยาไทเทเนียมไดออกไซด์แบบฟิล์มบางด้วยวิธีโซลเจล ซึ่งตัวเร่งปฏิกิริยา ดังกล่าวมีความเหมาะสมเมื่อพิจารณาจากผลการวิเคราะห์คุณสมบัติทางกายภาพด้วยอุปกรณ์ต่างๆ ได้แก่ XRD, UV-Vis spectrometer และ AFM ซึ่งตัวเร่งปฏิกิริยายาที่เตรียมได้ถูกนำไปใช้ในการบำบัดน้ำชะมูลฝอยด้วยกระบวนการโฟโตคะตะลิติก โดยสามารถบำบัดน้ำชะมูลฝอยจากหลุมฝังกลบเก่าซึ่งมืองก์ประกอบของสารอินทรีย์ที่ย่อยสลายได้โดยกระบวนการทาง ชีวภาพต่ำ มีเสถียรภาพและความคงตัวสูงในสิ่งแวดล้อม จากผลการศึกษาแสดงให้เห็นว่า การใช้ตัวเร่งปฏิกิริยาที่เตรียมขึ้นใน กระบวนการโฟโตคะตะลิติกมีศักยภาพในการกำจัดซีโอดีในนำชะมูลฝอยได้โดยมีประสิทธิภาพการกำจัดซีโอดีสูงสุด เท่ากับ 56.25 % โดยใช้ตัวเร่งปฏิกิริยา TiO, ที่จำนวนชั้นการเคลือบบนตัวกลาง 5 ชั้น ที่เวลา 180 นาที

กิตติกรรมประกาศ

ผู้เขียนขอขอบคุณคณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทค โน โลยีราชมงคลธัญบุรี และสำนักงานคณะกรรมการการ วิจัยแห่งชาติ (วช.) ที่ให้ทุนสนับสนุนการวิจัย ประจำปี 2558 ทำให้การคำเนินงานวิจัยนี้สำเร็จลูล่วงไปได้ด้วยดี

เอกสารอ้างอิง

- Kalčíková G., Babič J., Pavko A., Gotvajn A.Ž. 2014. Fungal and enzymatic treatment of mature municipal landfill leachate. Waste Manage. 34:798-803.
- [2] Calli B., Mertoglu B. Inanc B. 2005, Landfill leachate management in Istanbul: applications and alternatives. Chemosphere. 59:819–829.
- [3] Ward M.L., Bitton G., Townsend T.G., Booth M. 2001. Determining toxicity of leachates from Florida municipal solid waste landfills using a battery of tests approach. Photosynthetic Microorganisms in Environmental Biotechnology. Springer-Verlag. 111-135.
- [4] Oller, I, Malato, S., Sánchez-Pérez, J.A. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Science of the Table Environment. 409:4141–4166.
- [5] Wang X., Chen S., Gu X., Wang K. 2009. Pilot study on advanced treatment of landfill leachate. Waste Manage. 29: 1354–1358.
- [6] Guido D. M., Annalisa M., Giuseppe M., Claudio D. 2013. Comparison of UV/H₂O₂ based AOP as an end treatment or integrated with biological degradation for treating landfill leachates. Chemical Engineering Journal. 213:133-137.
- [7] Shrawan K. S., Walter Z. T., Georgio T. 2013. Fenton treatment of landfill leachate under different COD loading factors. Waste Management. 33:2116–2122.
- [8] Niloufar M. G., Andres A. L., Michael J. W. 2014. Hydroxyl radical (OH) scavenging in young and mature landfill leachates. Water research. 5 6:148-155.
- [9] Firas F., Fathi A., Mongi F., Sami S. 2009. Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor. Chemosphere. 75:256–260.

การประชุมวิชาการสิ่งแวคล้อมแห่งชาติครั้งที่ 15 **7** วันที่ 11-13 พฤษภาคม 25

ประวัติผู้เขียน

ชื่อ-สกุล	นางสาวปรียานุช พัฒนการค้า					
วัน เดือน ปีเกิด	24 กุมภาพันธ์ 2535					
ที่อยู่	128/3 ถนนมณีรัตน์ ตำบลอุทัยใหม่ อำเภอเมืองอุทัยธานี					
	จังหวัดอุทัยธานี 61000					
การศึกษา	ปริญญาตรี คณะวิศวกรรมศาสตร์ สาขาวิศวกรรมสิ่งแวคล้อม					
	มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี					
ประสบการณ์การทำงาน	ผู้ช่วยนักวิจัย สาขาวิศวกรรมสิ่งแวคล้อม ภาควิชาวิศวกรรมโยธา					
	คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลชัญบุรี					
	พ.ศ. 2557 ถึงปัจจุบัน					
เบอร์โทรศัพท์	09-6580-2301					
อีเมล์	preeyanuch_p@rmutt.ac.th					
	En Contraction of the Contractio					
	517 ATT 25151 282					
	1,04600 ·					