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Thesis Title Small Simple Quasi-injective Modules

Name - Surname Mr. Apichart Sa-nguannam
Program Mathematics
Thesis Advisor Assistant Professor Sarun Wongwai, Ph.D.
Academic Year 2012
ABSTRACT

The purposes of this thesis are to (1) study properties and characterizations of small
simple quasi-injective modules, (2) study properties and characterizations of endomorphism rings of
small simple quasi-injective modules, (3) extend the concept of small principally quasi-injective
modules, and (4) find some relations between small simple quasi-injective modules,
small principally quasi-injective modules and projective modules.

Let R be a ring. A right R-module M is called mininjective if, for each simple right ideal
K of R, every R-homomorphism } : K — M extends to an R-homomorphism from R to M.
A right R-module N is called small principally M-injective if every R-homomorphism from a small
and principal submodule of M to N can be extended to an R-homomorphism from M to N.
A right R-module M is called small principally quasi-injective if it is small principally M-injective.
The notion of small principally quasi-injective modules is extended to be small simple
quasi-injective modules. A right R-module N is called small simple M-injective if
every R-homomorphism from a small and simple submodule of M to N can be extended to
an R-homomorphism from M to N. A right R-module M is called small simple quasi-injective
if it is small simple M-injective.

The results were as follows. (1) The following conditions are equivalent for a projective
module M: (a) every small and simple submodule of M is projective; (b) every factor module
of a small simple M-injective module is small simple M-injective; (c) every factor module

of an injective R-module is small simple M-injective. (2) Let M be a right R-module and

S = End R(M ). Then the following conditions are equivalent: (a) M is small simple quasi-injective;

il



(b) if mR is small and simple, m € M, then [, r,(m) = Sm; (c) if mR is small and simple
and rR(m) - rR(n), m, n € M, then Sn C Sm; (d) if mR is small and simple, m € M,
then lM(rR(m) ﬂaR) = lM(a) + Sm for all a € R; (e) if mR is small and simple, m € M,
and ¥: mR — M is an R-homomorphism, then }(m) € Sm. (3) Let M be a principal nonsingular
module which is a principal self-generator and Soc(M R) C° M. If M is small simple quasi-injective,

then J(S) = 0.

Keywords: Small Simple Quasi-injective Modules, Small Principally Quasi-injective Modules,

Endomorphism Rings
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CHAPTER 1

INTRODUCTION

In modules and rings theory research field, there are three methods for doing the research.
Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings.
Secondly, to study about the modules over special rings. Thirdly, to study about ring R by way of

the categories of R-modules. Many mathematicians have concentrated on these methods.

1.1 Background and Statement of the Problems

Many generalizations of the injectivity were obtained, e.g. principally injectivity and
mininjectivity. In [2], V. Camillo introduced the definition of principally injective modules by
calling a right R-module M is principally injective if every R-homomorphism from a principal right
ideal of R to M can be extended to an R-homomorphism from R to M.

In [7], [8] and [9], Nicholson and Yousif studied to the structure of principally injective
rings, mininjective modules and principally quasi-injective modules. They gave some applications
of these rings and modules. From [7], a ring R is called right principally injective if every
R-homomorphism from a principal right ideal of R to R can be extended to an R-homomorphism
from R to R. From [8], a right R-module M is called mininjective if, for each simple right ideal
K of R, every R-homomorphism ) : K — M extends to an R-homomorphism from R to M.
Following from [9], they introduced the definition of principally quasi-injective modules by calling
a right R-module M is principally quasi-injective if every R-homomorphism from a principal
submodule of M to M can be extended to an R-endomorphism of M.

In [18] and [19], Sarun Wongwai introduced the definitions of small principally
quasi-injective modules and quasi-small principally injective modules. Following from [18],
a right R-module N is called small principally M-injective (briefly, SP-M-injective) if every
R-homomorphism from a small and principal submodule of M to N can be extended to an
R-homomorphism from M to N. A right R-module M is called small principally quasi-injective

(briefly, SPQ-injective) if it is SP-M-injective.



Following from [19], a right R-module N is called M-small principally-injective
(briefly, M-small P-injective) if every R-homomorphism from an M-cyclic small submodule of M to
N can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-small

principally-injective (briefly, quasi-small P-injective) if it is M-small P-injective.

1.2 Purpose of the Study

In this thesis, we have the purposes of study which are to extend concept of the previous
works and to generalize new concepts which are :

1.2.1 To extend the concept of mininjective modules.

1.2.2 To generalize the concept of small principally quasi-injective modules.

1.2.3 To establish and extend some new concepts which are dual to small principally

quasi-injective modules [18] and quasi-small principally-injective modules [19].

1.3 Research Questions and Hypothesis

We are interested in seeing to extend the characterizations and properties which remain
valid from these previous concepts which can be extended from principally injective modules [2],
principally-injective rings [7], mininjective modules [8], principally quasi-injective modules [9],
small principally quasi-injective modules [18)] and quasi-small principally-injective modules [19].

In this research, we introduce the definition of small simple quasi-injective modules and
give characterizations and properties of these modules which are extended from the previous works.

By let M be a right R-module. A right R-module N is called small simple M-injective if
every R-homomorphism from a small and simple submodule of M to N can be extended to an
R-homomorphism from M to N. Dually, a right R-module M is called small simple quasi-injective
if it is small simple M-injective. Many of results in this research are extended from
principally injective rings [7], mininjective rings [8], small principally quasi-injective modules [18]

and quasi-small principally-injective modules [19].

1.4 Theoretical Perspective

In this thesis, we use many of the fundamental theories which are concerned to the rings



and modules research. By the concerned theories are :
1.4.1 The fundamental of algebra theories.

1.4.2 The basic properties of rings and modules theory.

1.5 Delimitations and Limitations of the Study

For this thesis, we have the scopes and the limitations of studying which are concerned to
the previous works which are:

1.5.1 To extend the concept of mininjective modules.

1.5.2 To extend the concept of small principally quasi-injective modules and quai-small
P-injective modules.

1.5.3 To characterize the concept in 1.5.2 and find some new properties.

1.6 Significance of the Study
The advantage of education and studying in this research, we can improve and develop

the concepts and knowledge in the algebra and modules research field.



CHAPTER 2

LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the modules

and rings theory which are used in this thesis.

2.1 Rings, Modules, Submodules and Endomorphism Rings
This section is assembled summary of various notations, terminology and some

background theories which are concerned and used for this thesis.

2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary operations +

and -, called addition and multiplication (also called product), respectively, such that

(1) (R, +) is an additive abelian group.

(2) (R, ) is a multiplicative semigroup.

(3) Multiplication is distributive (on both sides) over addition; that is, for all
a,b,c € R,a*(b+c)=ab+ac and (a + b)c = a«c + bc.

The two distributive laws are respectively called the lefi distributive law and the
right distributive law.

A commutative ring is a ring R in which multiplication is commutative; i.e.
if asb = b-a for all a, b € R.If a ring is not commutative it is called noncommutative.

A ring with unity is a ring R in which the multiplicative semigroup (R, *) has an
identity element; that is, there exists e € R such that ea = a = ae for all a € R. The element e is
called unity or the identity element of R. Generally, the unity or identity element is denoted by 1.

In this thesis, R will be an associative ring with identity.

2.1.2 Definition. [14] A nonempty subset / of aring R is called an ideal of R if
(1) a,b e Iimpliesa—b € 1.

(2) aelandr e Rimply ar € Iand ra € 1.



2.1.3 Definition. [13] A subgroup 7 of (R, +) is called a left ideal of R if Rl C |, and

arightideal if IR C 1.

2.1.4 Definition. [14] A right ideal I of a ring R is called principal if I = aR for some

a € R.

2.1.5 Definition. [14] Let R be a ring, M an additive abelian group and (m, r)~ mr,
a mapping of M X R into M such that
(1) mreM
() (m,+ my)r=m;r+myr

(3) m(r +ry)) =mr +mr,

4) (mr)r, =m(rr,)

B5) ml=m

for all r, r,r, € Rand m,m;,m, € M. Then M is called a right R-module, often written as MR'

Often mr is called the scalar multiplication or just multiplication of m by r on

right. We define left R-module similarly.

2.1.6 Definition. [13] Let M be a right R-module. A subgroup N of (M, +) is called a
submodule of M if N is closed under multiplication with elements in R, that is n» € N foralln € N,
r € R. Then N is also a right R-module by the operations induced from M :

NXR — N, (n,r)—>nr,foralln € N,r € R.

2.1.7 Proposition. 4 subset N of an R-module M is a submodule of M if and only if
(1) 0eN.
(2) n,,n, € Nimpliesn, — n, € N.
(3) n € N, r € R implies nr € N.

Proof. See[15, Lemma 5.3]. []



2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of M. Then the
set of cosets
MIK={x+K|xeM}
is a right R-module relative to the addition and scalar multiplication defined via

(x+K)+(y+K)=(x+y)+K and (x+K)r=xr+K.

The additive identity and inverses are given by

K=0+K and —-(x+K)=-x+K.

The module M/K is called (the right R-factor module of ) M modulo K or

the factor module of M by K.

2.1.9 Definition. [13] Let M and N be right R-modules. A function f': M — N is called
an ( R-module ) homomorphism if for all m, m , m, € M and r € R
SCmyr+my)=f(m)r+f(m,).
Equivalently, f( m, + mz) = f( ml) +1( mz) and f(mr)=f(mr.
The set of R-homomorphisms of M in N is denoted by Homy(M, N ). In particular,

with this addition and the composition of mappings, Hom (M, M) = End (M) becomes a ring,

called the endomorphism ring of M.

2.1.10 Definition. [1] Let /: M — N be an R-homomorphism. Then
(1) fis called R-monomorphism (or R-monic) if f'is injective (one-to-one).
(2) fis called R-epimorphism (or R-epic) if f'is surjective (onto).

(3) fis called R-isomorphism if fis bijective (one-to-one and onto).

Two modules M and N are said to be R-isomorphic, abbreviated M = N in case
there is an R-isomorphism f: M — N.

Note: An R-homomorphism f: M — M is called an R-endomorphism.



2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping 77, : M — M/K

from M onto the factor module M/K defined by
N (x)=x+KeMK (xeM)

is seen to be an R-epimorphism with kernel K. We call 7], the natural epimorphism of M onto MIK.

2.1.12 Definition. [1] Let 4 C B. Then the function 7 = I, p:A4 — B defined by

1=(1, ,):ar~aforall a € 4 is called the inclusion map of A in B. Note thatif A S Band 4 &S C,

Bl A

andlfB;tC,thenlAgB;tl gC.Ofcourse 1,=1,c

A A

2.1.13 Definition. [14] Let M and N be right R-modules and let f: M — N be an
R-homomorphism. Then the set
Ker(f) ={xe M| f(x)=0 } is called the kernel of f
and
f(M) = { f(x) e N | xXeEM } is called the homomorphic image (or simply image)
of M under fand is denoted by Im( f).

2.1.14 Proposition. Let M and N be right R-modules and let f: M — N be an
R-homomorphism. Then
(1) Ker(f) is a submodule of M.
2) Im(f)=f(M) is a submodule of N.

Proof. See[13, 6.5]. O

2.1.15 Proposition. Let M and N be right R-modules and let f: M — N be an

R-isomorphism. Then the inverse mapping f L N> Misan R-isomorphism.

Proof. See [14, Chapter 14, 3]. O



2.2 Essential and Superfluous Submodules
In this section, we give the definitions of essential and superfluous submodules and some

theories which are used in this thesis.

2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M,

abbreviated K C€ M, if for every submodule L of M, K N L = 0 implies L = 0.

2.2.2 Definition. [13] A submodule K of M is called superfluous (or small) in M,

abbreviated K < M, if for every submodule L of M, K + L = M implies L = M.

2.2.3 Proposition. Let M be a right R-module with submodules K C N C M and

HC M. Then
(1) N& M ifand only if K< M and N/K < M/K;
2) H+ KK M ifand only if H<L M and K <K M.
Proof. See [1, Proposition 5.17]. O

2.2.4 Proposition. If K & M and f: M — N is a homomorphism then f(K) <« N.
In particular, if K K M C N then K < N.

Proof. See [1, Proposition 5.18]. O

2.3 Annihilators and Singular Modules
In this section, we give the definitions of annihilators, singular modules and some

theories which are used in this thesis.

2.3.1 Definition. [1] Let M be a right (resp. left) R-module. For each X C M, the right

(resp. left) annihilator of X in R is defined by
rR(X)= { reR |xr=0,Vx€X} (resp.lR(X)= { r€R|rx=O,Vx€X}).

For a singleton {x} , we usually abbreviated to rR(x) (resp. ! R(x) ).

2.3.2 Proposition. Let M be a right R-module, let X and Y be subsets of M and let A

and B be subsets of R. Then



(1) r(X) is a right ideal of R.
(2) X C Y imples rR(Y) - rR(X).
(3) A C B imples lM(B) C lM(A ).

4 X C ,ry(X) and A C ryl, (4).

Proof. See [1, Proposition 2.14 and Proposition 2.15]. O

2.3.3 Proposition. Let M and N be right R-modules and let f : M — N be a
homomorphism. If N'is an essential submodule of N, then f_l(N') is an essential submodule of M.

Proof. See [4, Lemma 5.8(a)]. O

2.3.4 Proposition. Let M be a right R-module over an arbitrary ring R, the set
Z(M)= { x € M| ro(x) is essential in R }
is a submodule of M.

Proof. See [4, Lemma 5.9]. O

2.3.5 Definition. [4] The submodule Z(M) = { x eM | rR(x) is essential in R, }
is called the singular submodule of M. The module M is called a singular module if Z(M) = M.

The module M is called a nonsingular module if Z(M) = 0.

2.4 Maximal and Minimal Submodules
In this section, we give the definitions and some properties of maximal submodules,

minimal (or simple) submodules and some theories which are used in this thesis.

2.4.1 Definition. [13] A right R-module M is called simple if M # 0 and M has no

submodules except 0 and M.

2.4.2 Definition. [13] A submodule K of M is called maximal submodule of M if
K # M and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if,

K+# M and for every 4 C M, K C A implies K = A.
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2.4.3 Definition. [13] A submodule N of M is called minimal (or simple) submodule
of M if N # 0 and it has no non-zero proper submodules of M, i.e. N is minimal (or simple) in M

if N# 0 and for every non-zero submodule 4 of M, 4 C N implies 4 = N.

2.4.4 Proposition. Let M and N be right R-modules. If f : M — N is an epimorphism
with Ker( f) = K, then there is a unique isomorphism O : M/K — N such that & (m+K) = f(m)
forallm eM.

Proof. See [1, Corollary 3.7]. U

2.4.5 Proposition. Let K be a submodule of M. A factor module M/K is simple if and
only if K is a maximal submodule of M.

Proof. See [1, Corollary 2.10]. O

2.5 Injective and Projective Modules
In this section, we give the definitions of the injective modules, injective testing,

projective modules and some theories which are used in this thesis.

2.5.1 Definition. [1] Let M be a right R-module. A right R-module U is called injective
relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism
@ : K — U can be extended to a homomorphism & : M — U.

A right R-module U is said to be injective if it is M-injective for every right

R-module M.

2.5.2 Proposition. The following statements about a right R-module U are equivalent :
(1) Uis injective;
(2) Uis injective relative to R;
(3) For every right ideal I C R and every homomorphism h : I — U there exists
an x € Usuch that h is left multiplicative by x
h(a) = xa forall a € I.

Proof. See[l, 18.3, Baer’s Criterion]. O
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2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called projective
relative to M (or U is M-projective) if for every N, every epimorphism g : M,— N,, for every

homomorphism }: U,— N, can be lifted to an R-homomorphism ]; U—> M.

A right R-module U is said to be projective if it is projective for every right

R-module M.

2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an injective
right (resp. left) R-module.

Proof. See [1, Proposition 18.6]. O

2.6 Direct Summands and Product of Modules

Given two modules M, and M, we can construct their Cartesian product M, X M,.
The structure of this product module is then determined “co-ordinatewise” from the factors
M, x M,. For this section we give the definitions of direct summand, the projection and the

injection maps, product of modules and some theories which are used in this thesis.

2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called a direct
summand of M if there is a submodule Y of M such that X N Y =0 and X + Y = M. We write

M=X® Y;such that Y is also a direct summand.

2.6.2 Definition. [1] Let M, and M, be R-modules. Then with their products module
M, x M, are associated the natural injections and projections
(DJ.:MJ.—>M1><M2 and 7TJ.:M1><M2—>MJ.
(j=1,2), are defined by
@,(x)) = (x;, 0), Py(x,) = (0, x,)
and

7T (x5 x) = x,, (x5 X)) = X,
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Moreover, we have

ﬂlgpl :1M1 and 7Z2§02:1M2'

2.6.3 Definition. [1] Let 4 be a direct summand of M with complementary direct

summand B, so M =A4 @ B. Then
T, :a+bea (a€d,beB)

defines an epimorphism 77, : M — A is called the projection of M on A along B.

2.6.4 Definition. [13] Let {Al. ,i el } be a family of objects in the category C.
An object P in Cwith morphisms { TP — A } is called the product of the family {Al., iel }
if :
For every family of morphisms { fi: X — A4, } in the category C, there is a
unique morphism f: X — P with 7 f=f. forall i € 1.
For the object P, we usually write iI;IIAi ; H IAi or HA,- . If all Al. are equal to

A, then we put Hin =47

The morphism 7Z; are called the i-projections of the product. The definition can be

described by the following commutative diagram :

HA%A

N

2.6.5 Definition. [13] Let { Ml Jiel } be a family of R-modules and ( HMZ. , TT. ) the
iel

product of the Ml. .Form,n € HMZ. ,7 € R, using
iel

T(m+n)=7(m)+ 7. (n) and 7(mr)= 7T (m)r,



13

a right R-module structure is defined on [Im ; such that the 77, are homomorphisms. With this
i€l

structure ( [ [ M T ) is the product of the { M., iel } in R-module.
iel

2.6.6 Proposition. Properties:
m rr {fl IN—>M iel } is a family of morphisms, then we get the map

f:N— HMI. such that ne (fl.(n))l. </

i€l

and Ker(f) = mIKer(fl.)sincef(n) =0 if and only iffl.(n) =0foralli el

(2) Foreveryj € I, we have a canonical embedding

6}Mj—> HMI., such that mjr—>(m.§.)

0 iel’ijMj’
iel

with & 7T.=1,, ,i.e. 7T is a retraction and &, a coretraction.
77T J 7 7

This construction can be extended to larger subsets of I : For a subset A C I

we_form the product [Tm ; and a family of homomorphisms

=y
. 72,']. for j €A,
]}:ile_[AM[_)]wj’ ];: 0 forjel—A.
Then there is a unique homomorphism
71']. for j €A,

g 1Im. - [Im. with ¢, =
2\ Y= AT 0 forjel—A.

The universal property of [Tam . yields a homomorphism

i€A

T 'el_IlMi — 'lngi with 7T, 7T, = T, for j € A.
l 1

Together this implies &4 T = €Y= 7Zj'.f0r allj € I, and by the properties of the product HMI. ,
=y

we get &, 7T, = 1MA'

Proof. See [13, 9.3, Properties (1), (2)] O
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2.7 Generated and Cogenerated Classes
In this section, we give some definitions and theories of the generated and cogenerated

classes which are concerned in this thesis.

2.7.1 Definition. [13] A subset X of a right R-module M is called a generating set of M
if XR =M. We also say that X generates M or M is generated by X. If there is a finite generating set

in M, then M is called finitely generated.

2.7.2 Definition. [1] Let U be a class of right R-modules. A module M is ( finitely)
generated by U (or U (finitely) generates M) if there exists an epimorphism

QU - M
i e

for some (finite) set / and Ul. € U foreveryi € L.
If U = {U } is a singleton, then we say that M is (finitely) generated by U
or (finitely ) U-generates; this means that there exists an epimorphism

JARREEY

for some (finite) set 1.

2.7.3 Proposition. If a module M has a generating set L C M, then there exists an
epimorphism

R —> M

Moreover, M is finitely R-generated if and only if M is finitely generated.

Proof. See[1, Theorem 8.1]. O

2.7.4 Definition. [17] Let M be a right R-module. A submodule N of M is said to be

an M-cyclic submodule of M if it is the image of an endomorphism of M.

2.7.5 Definition. [1] Let U be a class of right R-modules. A module M is ( finitely)
cogenerated by U (or U ( finitely) cogenerates M ) if there exists a monomorphism

M— [1U;
iel
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for some (finite) set / and Ul € U foreveryi € I

IfU = { U } is a singleton, then we say that a module M is ( finitely) cogenerated by U
or (finitely ) U-cogenerates; this means that there exists a monomorphism

M—-U!

for some (finite) set 1.

2.8 The Trace and Reject
In this section, we give some definitions and theories of the trace and reject which are

concerned in this thesis.

2.8.1 Definition. [1] Let U be a class of right R-modules. The trace of U in M and the

reject of U in M are defined by
TrM(U)=Z{ Im(h) | h:U— M forsome UelU }
and

RejM(U)=ﬂ{Ker(h) | h: M — U for some UGU}.

IfU = { U } is a singleton, then the trace of U in M and the reject of U in M are in the form

Tr,, (U) =24 m(h) | h € Hom(U, M) }

and
RejM(U)= ﬂ{ Ker(h) | h e HomR(M, U) }
2.8.2 Proposition. Let U be a class of right R-modules and let M be a right R-module.
Then
(1) Tr,, (W) is the unique largest submodule L of M generated by U,
2) RejM(U) is the unique smallest submodule K of M such that M/K is
cogenerated by U.

Proof. See [1, Proposition 8.12]. O
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2.9 Socle and Radical of Modules
In this section, we give some definitions and theories of the socle and radical of modules

which are used in this thesis.

2.9.1 Definition. [13] Let M be a right R-module. The socle of M, Soc(M), we denote

the sum of all simple submodules of M. If there are no simple submodules in M we put Soc(M) = 0.

2.9.2 Definition. [13] Let M be a right R-module. The radical of M, Rad( M), we denote
the intersection of all maximal submodules of M. If M has no maximal submodules we set

Rad(M) =M.

2.9.3 Proposition. Let & be the class of simple R-modules and let M be an R-module.

Then
Soc(M) = Tr,, (&)
= ﬂ{ LCM | L is essential in M }
Proof. See[13,21.1]. O
2.9.4 Proposition. Let & be the class of simple R-modules and let M be an R-module.
Then
Rad(M) = Rej, (&)
= Z{ LCM | L is superfluous in M }
Proof. See[13,21.5]. O

2.9.5 Proposition. Let M be a right R-module. A right R-module M is finitely generated
if and only if Rad(M ) < M and M/Rad(M) is finitely generated.

Proof. See[13,21.6,(4)]. O

2.9.6 Proposition. Let M be a right R-module. Then Soc(M) C€ M if and only if every
non-zero submodule of M contains a minimal submodule.

Proof. See [1, Corollary 9.10]. 0J
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2.10 The Radical of a Ring
In this section, we give some definitions and theories of the radical of a ring which are

used in this thesis.

2.10.1 Definition. [1] Let R be a ring. The radical Rad( RR) of R, is an (two side) ideal

of R. This ideal of R is called the (Jacobson) radical of R, and we usually abbreviated by

J(R) = Rad(Ry).

2.10.2 Definition. [1] Let R be a ring. An element x € R is called right (left) quasi-

regular if 1 — x has a right (resp. left ) inverse in R.
An element x € R is called quasi-regular if it is right and left quasi-regular.
A subset of R is said to be (right, left) quasi-regular if every element in it has

the corresponding property.

2.10.3 Proposition. Given a ring R for each of the following subsets of R is equal to the

radical J(R) of R.
(J 1) The intersection of all maximal right (left) ideals of R;
(J,) The intersection of all right (left) primitive ideals of R;
(J3) { X E€R | rxs is quasi-regular for all r, s € R };
(J) { X €E€R | rx is quasi-regular for all v € R };
(J) { X€E€R | xs is quasi-regular for all s € R };
(Jg) The union of all the quasi-regular right (left) ideals of R;
(J,) The union of all the quasi-regular ideals of R;
( Js) The unique largest superfluous right (left) ideals of R;

Moreover, ( J,), (J,), (Jo), (J) and ( J7) also describe the radical J(R) if “quasi-regular” is
replaced by “right quasi-regular” or by “left quasi-regular”.

Proof. See[1, Theorem 15.3]. 0J
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2.10.4 Proposition. Let R be a ring with radical J(R). Then for every right R-module

J(R)M,, C Rad(My).

If R is semisimple modulo its radical, then for every right R-module,
J(R)M = Rad(Mp)

and M/J( R)MR is semisimple.

Proof. See [1, Corollary 15.18]. 0



CHAPTER 3

RESEARCH RESULT

In this chapter, we present the results of small simple M-injective modules and small

simple quasi-injective modules.

3.1 Small Simple M-injective Modules
3.1.1 Definition. Let M be a right R-module. A right R-module N is called small simple
M-injective if every R-homomorphism from a small and simple submodule of M to N can be

extended to an R-homomorphism from M to N.

3.1.2 Lemma. Let M and N be right R-modules. Then N is small simple M-injective if

and only if for each small and simple submodule mR of M,

Ly rR(m) = HomR(M,N)m.

Proof. (=) Let N be a small simple M-injective module and let mR be a small and simple
submodule of M. To show that [, rp(m) = Hom(M,N)m. (D) Let ¢@(m) € Homy(M,N )m.
To show that @(m) € Ly rR(m), ie. @(m)r=0, for every r € rR(m). Letr € rR(m). Then mr = 0.
Hence @(m)r = @(mr) = @(0) =0. () Letx € Ly rR(m). To show that x € HomR(M,N)m.
Define (¢: mR — xR by @ (mr) = xr for every r € R. Let mry, mr, € mR such that mr, = mr,.

Then mr, — mr

, = 0, hence m(r1 — r2) =0,s07r —r, € rR(m). Since x € lNrR(m),

1 1

x(r1 - rz) = 0. It follows that X1y = X1, Thus (D(mrl) =Xr; = Xr, = ¢(mr2). This shows that @ is

well-defined. Let mr,, mr, € mR and r € R. Then (D(mrlr + mrz) = (D(m(rlr + r2)) =

2
x(rlr + r2) = xrrotoxr, = (xrl)r +oxr, = ¢(mr1)r +¢(mr2). This shows that ¢ is an

R-homomorphism. Since N is small simple M-injective, there exists an R-homomorphism
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(ﬁ: M — N such that (ﬁ 1, = 1,0 where 1,: mR — M and 1,: xR — N are the inclusion maps.
Then x =x-1= @(m-1) = @(m) =1, (m) = qu) 1,(m) = qB (m) € Homy( M, N )m.

(<) To show that N is small simple M-injective. Let mR be a small and simple
submodule of M and let ¢ : mR — N be an R-homomorphism. Let r € rR(m). Then mr = 0.
Hence @(m)r = @(mr) = @(0) = 0. This shows that @(m) € I, rp(m). By assumption,

we have @(m) € HomR(M,N)m. Then @(m) = (B(m) for some (5 S HomR(M,N). Hence
@(m) = qB(m) = qu(m) where 7 : mR — M is the inclusion map. This shows that qB is an

extension of (. t

_(F F . _ _(F F
3.1.3 Example. Let R = (0 F) where Fis a field, M, = R, and N, = (0 0).

Then N is small simple M-injective.

Proof. Wehaveonty X, = 0 5] 6= (0 )= (5 5 )ox = (2 £ = (3 0 anax, -

((F) E) are R-submodules of M. We have non-zero submodule of M two sets are X1 = (8 Z) and

X

)= (g l(:)j We found X, < M because for every X C M,2<n<5, X #MthenX, +X +M.

We found X2 is not small in M because X2 =l X3 = M. Let m = (g )(()) S Xl'

Then mR = (0 X) (F Fj = (0 F) = X,. Hence mR = X,. This shows that X, is a simple
0 0)\0 F 00

submodule of M. Let ¢: X; — N be an R-homomorphism. Since | € F, we have (g é) € X,
there exists x,, x,,€ F such that (0((8 ;D 5= (Xcl)l Xéz).Then gﬁ((g ;D
olGo)o ) = elGGY = (556D - (%) -
Define q;: M — N by (ﬁ[(g SD (Xlga Xlozb) for every (2 2) ((F) E)
o (32} (32) 2 ) o (32) - (3 2) me 0[5 2]) -

~ b ~
(Xlzai Xlzblj (Xlzaz Xl?sz = go(az ZJJ This shows that ¢@ is well-defined.
0 0 0 0 0 ¢

~ o
e
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~(({a b a b
el" Fland[* Y| e T F] Then@||™ t|[* Y]+|%2 >2|=
0 F 0 z 0 F 0 c 0 z 0 c,
~([ax+a, ay+bz+b )} _ (x (ax+a) x (ay+bz+b)) _
0 cz+c, 0 0

I —
o P
NO l\.)o-
N
N—
I
hS)

X, aX+x A, ay+x bz+x9 X.axXx X ay+Xx bz x.a XxX.b
X1 12T 12 2 = 1271 1271 12§ + 1272 T12°2 =
0 0 0 0 0
12 1 X y + X8 %P, = (ﬁ 3 b Xy + é a, b, _
O z 0 0 0 c 0 z 0 c,

o
x

This shows that (ﬁ is an R-homomorphism. To show that @ = (ﬁl. Let (

)
men ({6 3]) = el(s e ) = el B al) ) - )3 - (%)

-~ 0 x)| _ A0 x)| _ (0 xx . ~ . .
Hence @l((o OD Q ((o OD (0 : ) This shows that ¢ is an extension of .

o
o

3.1.4 Proposition. Let M be a right R-module and let { N.,iel } be a family of

right R-modules. Then the direct product 11;11N is small simple M-injective if and only if each N, is

small simple M-injective.

Proof. (=) Let T, : I_IIN ;— N.and @.: N, — l_[[N ., for each i € I, be the i-th projection and
= i€

the i-th injection maps, respectively. To show that each i € I, N, is small simple M-injective.

Let i € I, mR a small simple submodule of M and let ¢ : mR — N, be an R-homomorphism.

Then by assumption, there exists an R-homomorphism (/A) M — I_IIN ; such that Q.= qu)l where
i€

~

1 :mR — M is the inclusion map. Hence Z.(0,(p = 72;(51, so by Definition 2.6.2, ¢ = T Q1.

Thus 7Z.¢ is an extension of (.

(<) Let mR be a small and simple submodule of M and let ¢ : mR — l_[[N
IS

be an R-homomorphism. Since for each i € I, N, is small simple M-injective, there exits an
R-homomorphism &, : M — N, such that Z.¢p = ;1 where 1 : mR — M is the inclusion map

and 7T : HN — N, is the i-th projection map. Then by Definition 2.6.5 and Proposition 2.6.6,
i€l
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we obtain (5: M —>l_l;[[Ni such that 721(5 = Q. Hence 723(51 = Q1,80 TP= Q1= 7Z:(ﬁl

Thus . = 7Z;¢A)l Therefore (¢ = qB . U

n
3.1.5 Lemma. Let N, (1 <i < n) be small simple M-injective modules. Then @lNi is
Pt

small simple M-injective.

n

Proof. Assume that for each 1 <i <n, N, is small simple M-injective. To show that @lN ; 1s small
1=

n
simple M-injective. Let mR be a small and simple submodule of M and let @ : mR — .@1N ;be an
i=

R-homomorphism. Since for each 1 < i < n, N, is small simple M-injective, there exists an
R-homomorphism @, : M — N, such that 7Z.¢p = .1 where 1: mR — M is the inclusion map and
T :l.éélNi_’ N, is the i-projection map. Set qB =LQ F LY, + .t LQ M —>i€Z‘)1Nl.
where 7, : N, _)iélNi for each 1 < i < n is the i-injection map. To show that @ = (51.
Let mr € mR. Then @l(mr) = @(mr) = llgol(mr) + 12(02(mr) + ... + ln(Dn(mr) =
Qmr) + @mr) + ...+ @mr) = mOmr) + LEmr) + ... + TEmr) =

(7Z'1 LT Y@ (mr) = @(mr). Hence (B is an extension of (. H

3.1.6 Lemma. Any direct summand of a small simple M-injective module is again small

simple M-injective module.

Proof. Let N be a small simple M-injective module and let 4 be a direct summand of N.

To show that 4 is small simple M-injective. Let mR be a small and simple submodule of M and let
@: mR — A be an R-homomorphism. Let ¢2,: 4 — N be the injection map. Since N is small simple
M-injective, there exists an R-homomorphism (5 : M — N such that @, @ = (2 I where
1: mR — M is the inclusion map. Let 77,: N — A be the projection map. Then 7, @ = T, (2 L.

Hence by Definition 2.6.2, ¢ = 7, (Z) 1. This shows that 77, qB is an extension of . U
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3.1.7 Theorem. The following conditions are equivalent for a projective module M.

(1) Every small and simple submodule of M is projective.
(2) Every factor module of a small simple M-injective module is small simple
M-injective.

(3) Every factor module of an injective R-module is small simple M-injective.

Proof. (1) = (2) Let N be a small simple M-injective module, X a submodule of N, mR a small and
simple submodule of M and let ¢»: mR — N/X be an R-homomorphism. Since mR is projective,
there exists an R-homomorphism & : mR — N such that ¢ = 1 where 7] : N — N/X is the
natural R-epimorphism. Since N is small simple M-injective, there exists an R-homomorphism
B : M — N such that & = f1 where 1 : mR — M is the inclusion map. Then @ = nNa = npi.
Hence ¢ = 7]/31. This shows that 7)/ is an extension of (. Thus N/X is small simple M-injective.

(2) = (3) Let N be an injective R-module and X be a submodule of N.
Then by (2), N/X is small simple M-injective.

(3) = (1) Let mR be a small and simple submodule of M, & : A — B an
R-epimorphism and let ¢»: mR — B be an R-homomorphism. Let £ be an injective R-module and
embed A4 in E by Proposition 2.5.4. Since ¢ is an R-epimorphism, by Proposition 2.4.4, there exists

an R-isomorphism O': A/Ker(@) — B such that o/ = orn, where n,: A — A/Ker(Q) is the natural

R-epimorphism. Then by Proposition 2.1.15, we have O it 345 Al/Ker(Q) is an R-isomorphism,
so B = A/Ker(@) and A/Ker(Q) C E/Ker(Qt). By assumption, there exists an R-homomorphism
q;: M — E/Ker(¢X) such that zla'lq) = (512 where 1, AlKer(@) — E/Ker(@) and
1,: mR — M are the inclusion maps. Since M is projective, there exists an R-homomorphism
f : M — E such that (5 = 17,8 where 17, E — E/Ker(@X) is the natural R-epimorphism.
Then qu)l2 = 1,B1,. Hence zlo"lgp = qu)l2 = 1,1, It follows that 11(7'1(0 = 1,p1,
To show that f(mR) C A. Let mx € mR. Then zlo"l(o(mx) = ﬂzﬂlz(mx) = Uzﬂ(mx) =

Uz(ﬂ(mx)) = fB(mx) + Ker(Q). Hence ZIG'lgﬁ(mx) = O"I(D(mx) =g+ Ker(Q) for some a € A4,
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so B(mx) + Ker(&) = a + Ker(&). Thus f(mx) — a € Ker(&). It follows that S(mx) =

(Bmx) — a) + a € Ker(@@) + A = A. To show that @ = f. Let mx € mR.
Then 1,07 @mx) = O '@mx) = 1,pL(mx) = 1,B(mx). Hence 1,0 @P(mx) =
1,8(mx) = B(mx) + Ker(Q), so 1,0 @(mx) = B(mx) + Ker(Q0). Since & is an R-epimorphism,
@mx) = a(a) for some a € A. Thus 1,0 @mx) = 1,07 a@ = oA =

771(a) = q + Ker(Q). It follows that S(mx) + Ker(Q) = a + Ker(&). Then f(mx) —a € Ker(Q).

Hence a(ﬁ(mx) - a) = 0, so aff(mx) = o(a) = @@mx). Thus Qf(mx) = @(mx).

This shows that £ lifts (. O

3.2 Small Simple Quasi-injective Modules

A right R-modules M is called small simple quasi-injective if it is small simple

M-injective. Write S = End R(M ) denoted the endomorphism ring of M. In this section, we present

the results of characterizations and properties of small simple quasi-injective modules.

3.2.1 Lemma. Let M be a right R-module and S = EndR(M). Then the following

conditions are equivalent :

(1) M is small simple quasi-injective.
(2) If mR is small and simple, m € M, then /A rR(m) = Sm.
(3) If mR is small and simple and v ((m) C r(n), m,n € M , then Sn C Sm.

(4) If mR is small and simple, m € M, then lM(rR(m)ﬂaR) = 1,(a) + Sm
foralla € R.
(5) If mR is small and simple, m € M, and y: mR — M is an R-homomorphism,

then Y (m) € Sm.

Proof. (1) = (2) Let mR be small and simple and let m € M. To show that Ly, rR(m) = Sm.

(D) Let @(m) € Sm. To show that @(m) € Ly rR(m), ie. @(m)r =0, for every r € rR(m).
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Let r € rp(m). Then mr = 0. Hence @(m)r = @(mr) = @(0) = 0. (C) Let x € [ rp(m).
To show that x € Sm. Define ¢ : mR — xR by @(mr) = xr for every r € R.

Let mr,, mr

, € mR such that mr, = mr,. Then mr

, — mry = 0, hence m(r, — r)) =0,
so r, —r, € rR(m). Since x € [, rR(m), x(r1 — rz) = 0. It follows that xr, = xr,.

Thus gD(mrl) =xr, = xr, = ¢(mr2). This shows that ¢ is well-defined. Let mr|, mr, € mR

2

and » € R. Then (D(mrlr + mrz) = (D(m(rlr + rz)) = x(rlr + r2) = xr,r + xr

1 2 =

Grpr + xr, = @@mr)r + @(@mry). This shows that ¢ is an R-homomorphism.

Since M is small simple quasi-injective, there exists an R-homomorphism (5: M —> M
such that 1, ¢ = (312 where 7;: xR — M and 1,; mR — M are the inclusion maps.
Thenx =x-1= @(m1)= @(m) = 1,Q(m) = @ 1,(m) = P (m) € Sm.

(2) = (1) To show that M is small simple quasi-injective. Let mR be a small and
simple submodule of M and let (»: mR — M be an R-homomorphism. Let » € rR(m). Then mr = 0.
Hence @(m)r = @(mr) = @(0) = 0. This shows that @(m) € Ly, rR(m). Then by assumption,

we have @(m) € Sm. Hence ((m) = (ﬁ(m) for some qu) € §. Thus @(m) = qu)(m) = qu)l(m).
This shows that @ = (5 .

(2) = (3) Let mR be small and simple and let rR(m) - rR(n), m, n € M.
To show that Sn C Sm. Let x € [, ry(n). To show that x € [, r,(m). Let a € rp(m).
Since rR(m) - rR(n), a € rR(n), soxa=0.Thusx € [, rR(m). This shows that /,, rR(n) i, rR(m).
Let @(n) € Sn. To show that @(n) € erR(n), ie. @@m)r = 0, for every r € rR(n).
Let 7 € rp(n). Then nr = 0. Hence @ (n)r = @(nr) = @(0) = 0. This shows that Sn C [, rp(n).

It follows that Sn C [, rp(n) C 1, r(m) = Sm.

(3) = (4) Let mR be small and simple, m € M and let a € R.
To show that IM(rR(m)ﬂaR) = 1,(@ + Sm. (C) Let x € ZM(rR(m)ﬂaR). To show that

x € ZM(a) + Sm. Since x € lM(rR(m) N aR), x(rR(m) N aR) = 0. Hence xar = 0 every r € R
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such that mar = 0, so r € rp(ma). Let b € rp(ma). Then mab = 0. Hence xab = 0, so b € ry(xa).
This shows that rR(ma) C rR(xa). Since mar = 0, we show two cases, i.e. ma = 0 and ma # 0.
If ma = 0, then mar = 0 every r € R. Hence r € ry(ma), so r € ry(xa). Thus xar = 0 every r € R.
Since we have 1 € R, xa = xa-1 = 0. Therefore xa = 0. It follows that x € lM(a) C ZM(a) + Sm.

If ma # 0, then maR # 0. We have aR C R,, so maR C mR. Since mR is simple, maR = mR.

R>
This shows that maR is a small and simple submodule of M. By (3), we have Sxa C Sma.
Then xa = 1,,(xa) € Sxa C Sma. Hence xa € Sma, so xa = (@(ma) for some @ € S.
Thus xa — @(ma) = 0. Therefore (x — (D(m))a = 0. It follows that x — @(m) € ZM(a).
Then x = (x — @m) + @m) € Ly(@) + Sm. (D) Let x € L@ + Sm.
To show that x € ZM(rR(m)ﬂaR), i.e. xay = 0, for every y € R such that may = 0.
Since x € [, (a) + Sm, x = v + @@m) for some v € (@), @ € S.
Then xa = va + @(m)a = 0 + P(m)a, hence xa = Q(m)a. Let y € R such that may = 0.
Thus xay = @(m)ay = @ (may) = ¢(0) = 0.

(4) = (2) Let mR be a small and simple submodule of M. We have 1 € R.

Puta = 1,, then by (4), (m) = Sm.

Ly™r
(3) = (5) Let mR be a small and simple submodule of M and let : mR — M
be an R-homomorphism. To show that y(m) € Sm. Let x € rp(m). Then mx = 0.

Hence y(m)x = y(mx) = y(0) =0, so x € rR(}/ (m)). This shows that rplm) C rR(}/ (m)).

Then by (3), we have S (m) C Sm. It follows that ¥ (m) = 1, V(m) € Sy (m) C Sm.

(5) = (1) To show that M is small simple quasi-injective. Let mR be
a small and simple submodule of M and let @ : mR — M be an R-homomorphism.
Then by (5), @(m) € Sm. Hence ((m) = (a(m) for some (ﬁ € §. This shows that (5 is an

extension of (. U
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3.2.2 Lemma. Let M be a small simple quasi-injective module and S = End(M).

If m € Mand & € Swith (M) is small and simple, then
ZS(Ker(a) N mR) = I (m) + Sa.

Proof. (D) Letx € I (m) + S&. To show that x € lS(Ker(OC) N mR), i.e. xmy = 0, for every
y € R such that ¢(my) = 0. Since x € [,(m) + Sa, x=v+ @ for some v € Is(m), @ € S.
Then xm = v(m) + @O(m) = 0 + @O(m). Hence xm = PQ(m). Let y € R such that &(my) = 0.
Thus xmy = @Q(m)y = PO(my) = @(a(my)) = @(0) = 0.

(C) Let B € IS(Ker(Ot) N mR). To show that B € I,(m) + Sa.
Let b € rR(a(m)). Then a(m)b = o(mb) = 0. Hence mb € Ker(&) N mR, so [f(mb) = 0.
Thus b € rR(ﬂ(m)). This shows that rR(Ol(m)) & rR(ﬂ(m)). Then by Proposition 2.3.2,
L, rR(,b’(m)) gy rR(Ol(m)). If a(m) = 0, then cX(m)r = 0 every r € R. Then r € rR(Ot(m)).
Hence r € rR(ﬂ(m)), so f(m)r = 0 every r € R. We have 1 € R, so f(m) = B(m)1 = 0.

Thus f(m) = 0. Therefore f € ZS(m). It follows that f € ls(m) - ZS(m) + Sa. If a@m) =0,
then a(m)R # 0. Since & is an R-homomorphism, a&(m)R = a(mR) C a(M).

Since (M) is simple in M and (m)R # 0, Q(m)R = Q(M). This shows that (m)R is a small
and simple submodule of M. Then by Lemma 3.2.1, we have [, r,(a(m)) = Sa(m).
Let fB(m) € SP(m). To show that fB(m) € I, r(f(m), ie. fBmyr = 0, for every
r € rp(fm). Let r € rp(f(m). Then B(m)r = B(mr) = 0. Hence [f(m)r = [p(mr) =
f(B(mr)) = f(0) = 0. This shows that SB(m) C I, r(S(m)). Then Sp(m) C I, rp(f(m)) C
Ly r{@(m)) = Sa(m). Hence SP(m) < Sa(m), so fm) = 1, f(m) € Spm) < Sau(m).
Thus f(m) € SA(m). Therefore f(m) = yOt(m) for some y € S. It follows that S(m) — y0t(m) = 0.

Then (B — yot)(m)=0. Hence  — Y& € I¢(m). Thus = (f—yQ) + ya € I;(m) + S 0
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Following [9], a right R-module M is called a principal self-generator if every element

m € M has the form m = Y (m ) for some y: M — mR.

3.2.3 Proposition. Let M be a principal module which is a principal self-generator and

let S = EndR(M). Then the following conditions are equivalent :

(1) M is small simple quasi-injective.

(2) ZS(Ker(Ol) N mR) = I (m) + S for allm € M and & € S with (M) is
small and simple in M.

3) lS(Ker(a)) =Saforall @ € Swith (M) is small and simple in M.

(4) Ker(at) C Ker(f), where @, f € S with (M) is small and simple in M,

implies Sff C S«.

Proof. (1) = (2) By lemma 3.2.2.

2) = (3) Write M = myR for some m, € M. Put m = m, in 2).

0
Then IS(Ker(Ol) N moR) < ZS(mO) + Sa. We have Ker(a) N myR = Ker(&X) and ZS(mo) =0,
) lS(Ker(Ot)) =Sa.

B) = @ Let a, f € S with (M) is small and simple in M and
Ker(a) C Ker(f). To show that Sf C Sc. Since Ker(&) C Ker(f), by Proposition 2.3.2,
L Ker(f) C I Ker(@). Let @f € Sp. To show that @F € I, Ker(p), ie. @B(x) = 0,
for every x € Ker(f). Let x € Ker(f). Then B(x) = 0, hence @f(x) = (D(ﬁ(x)) = @(0) = 0.
This shows that S C I Ker(). Thus by (3),Sp C I, Ker(fB) C IgKer(X) = Sa.

(4) = (1) Let mR be a small and simple submodule of M and let @ : mR — M
be an R-homomorphism. Since M is a principal self-generator module, by [9] there exists § € S
such that B(m,) = m for some 8 : M — mR. Then S(m,R) = ,[)’(ml)R = mR. Since (M) C mR and
we have m R C M, ,B(mlR) C p(M). Then mR = ,B(mlR) C S(M). 1t follows that S(M) = mR.

This shows that S(M) is a small and simple submodule of M. Let x € Ker(f3).
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Then @P(x) = (D(ﬂ(x)) = @(0) = 0. Hence x € Ker(f). This shows that Ker(f) C Ker(Qp).
Thus by (4), S8 C SPB. We have 1, € S, s0 @ = 1,,@f € SPB C SP. It follows that
@B € SP. Then @

@ for some @ € S. To show that Q= Q1 Let mx € mR.

Then @(mx) = @mx = @(Bm))x = (Bm)x) = PBmx) = GPmx) = @Pm)x =

(2 (m)x = (Z (mx) = (5 1(mx). 0

3.2.4 Theorem. Let M be a small simple quasi-injective module, m, n € M and mR is

small and simple,

(1) If mR embeds in nR, then Sm is an image of Sn.
(2) IfnR is an image of mR, then Sn embeds in Sm.

(3) If mR = nR, then Sm = Sn.

Proof. (1) Let /: mR — nR be an R-monomorphism. Since M is small simple quasi-injective, there
exists an R—homomorphism/}: M — M such that 1, f = j}ll where 1,: mR — M and 1,: nR — M
are the inclusion maps. Define O : Sn — Sm by o (a(n) = af‘(m) for every @ € S.
Let 0 = a¢(n) € Sn. Since f(mR) C nR, af(mR) C (nR), so &f(m) = f(m-1) € of(mR) C
a(nR) = a(n)R = 0-R = 0. Then o (a®)) = af(m) = f(m) = 0. This shows that O is
well-defined. Let &, (n), &,(n) € Snand s € S. Then G(Sal(n) + Olz(n)) = G((SO!1 + Olz)n) =
(SO[1 + az)f(m) = SO!le’(m) + Olzj}(m) = SG(OEl(n)) # G(az(n)). This shows that O is

an S-homomorphism. If /' = 0, then f(mx) = 0 for every mx € mR. Hence f is not an
R-monomorphism, a contradiction. Thus f/'# 0. We have 0 # J} (mR) = f(mR) C M. Let mx € mR.
Then f(mx) € f(mR). Hence f(mx)=f(mx) € f(mR)=f(m)R, so f(mx) € f(m)R. This shows
that f(mR) C f(m)R. Thus f(mR) = f(mR) = f(m)R. It follows that f(mR) = f(m)R.

Thus by Definition 2.4.3, f(m)R is simple in M. By Proposition 2.2.4, f(m)R = J} (mR K M.
Therefore f(m)R is small and simple in M. Let x € rR( f(m)). Then f(mx) = f(m)x = 0.

Hence mx € Ker(f). Since f'is an R-monomorphism, mx = 0, so x € rR(m). This shows that
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rR(f(m)) C rp(m). By lemma 3.2.1, Sm C Sf(m). We have 1, € §,som =1, (m) € Sm C Sf(m)
so m € Sf(m). Then m = Of(m) for some & € S. To show that O is an S-epimorphism.
Since m = af(m) € Sf(m) and af(m) = & f(m) = o () € G(Sn), m € Sf(m) < o (Sn),
so Sm C o (Sn). It follows that Sm = o (Sn).

(2) Let f: mR — nR be an R-epimorphism. We have n-1 € nR, son=n-1=f(my)
for some y € R. Since M is small simple quasi-injective, there exists an R-homomorphism
j}: M — M such that 1, f = J}ll where 7,: mR — M and 1,: nR — M are the inclusion maps.
Define 0 : Sn — Sm by o(a(n) = aj;(my) for every @ € S. Let 0 = a(n) € Sn.
Then o(am) = « f (my) = af(my) = a(m) = 0. This shows that O is well-defined.
Let & (n), Q,(n) € Sn and s € S. Then O(s(n) + aA,m) = o(sa, + A)n) =
(SO!1 + Olz)j;(my) = SOlle‘(my) + Olzj}(my) = SO'(O[l(n)) + (7(0[2(11)). This shows that O is an
S-homomorphism. To show that & is an S-monomorphism, i.e. Ker(O) = {0} (D) It is clear.
(C) Let ¢(n) € Ker(0). Then 0 (a(n)) = 0. Hence 0= o (a(n) = & f(my) = af (my) = a().

It follows that ct(n) = 0 € {0}.
(3) It is clear by (1) and (2). []

3.2.5 Proposition. Let M be a principal module which is a principal self-generator.

If M is small simple quasi-injective, then Soc(MR) C rM(J(S)).

Proof. Let mR be a simple submodule of M. To show that mR C rM(J(S)), ie. a(m) =0, for
every & € J(S). Let @ € J(S). Suppose &(m) # 0. Since M is principal self-generator,

mR = > s(M)for some I C S by [17, Proposition 2.7]. Since mR is simple, there exists
sel

0#s € I C Ssuch that s(M) = mR. Thus &s # 0. To show that Ker(s) = Ker(s). Let x € Ker(s).
Then s(x) = 0. Hence s(x) = a(s(x)) = a(0) = 0. Thus x € Ker(as). This shows
that Ker(s) C Ker(Qs). By Proposition 2.4.4, we have M/Ker(s) = s(M), so M/Ker(s) is

simple in M. Hence by Proposition 2.4.5, Ker(s) is maximal in M. Thus Ker(s) = Ker(s).



31

Define f: s(M) — as(M) by f(s(m)) = as(m) for every m € M. Let 0 = s(m) € s(M).
Then f(s(m)) = as(m) = a(s(m)) = () = 0. This shows that f is well-defined.

Let s(m,), s(m,) € s(M) and r € R. Then f(s(m)r + s(m,) = f(s(m;r) + s(m,) =

f(S(mlr + mz)) = Ols(mlr + mz) = Ols(mlr) + aS(mz) = Ols(ml)r + Ols(mz)
f(S(ml))r + f(S(mz)). This shows that f is an R-homomorphism. Let a(s(m)) € as(M).
We see that fis an R-epimorphism because every (s(m)) € as(M), we have s(m) € s(M)
such that f(s(m)) = as(m). If 0 # Ker( f), then 0 # Ker( f) C s(M). Since s(M) is simple,
Ker(f) = s(M), a contradiction. Hence 0 = Ker( f), so f is an R-monomorphism. Thus f is
an R-isomorphism, s(M) = as(M). Therefore as(M) is simple in M. Since M is a principal
module, by Proposition 2.9.5, J(M) < M. By Proposition 2.10.4, J(S)M C J(M). Hence
J(S)M C J(M) K M, so by Proposition 2.2.3, J(S)M < M. Since & € J(S) and J(S) C SS ,
JSS C J(S), so as € J(S)S < J(S). Then as € J(S). Hence as(M) C JSIM K M,
so as(M) < M. Thus as(M) is a small and simple submodule of M. Since M is small simple
quasi-injective, by Proposition 3.2.3, we have ZS(Ker(OCS)) = Sdas, so ZS(Ker(s)) = Sdas.
We have s € lS(Ker(S)), so s € Sas. It follows that s = pas for some f € S.
Then s — s = 0. Hence (1 — fa)s = 0, so by Proposition 2.10.3, (1 — S) has a right inverse.

Thus (1 — Ba) (1 — Bat)s = (1 — Ber)'+0. Therefore s = (1 — fcr) -0 =0, a contradiction. [

Let M be a right R-module with § = End (M ). Following [6], we write a symbol delta is

denoted by A = { seSs | Ker(s) C¢M } It is known that A is an ideal of S [6, Lemma 3.2].

3.2.6 Proposition. Let M be a principal module which is a principal self-generator

and Soc(MR) CCé M. If M is small simple quasi-injective, then J(S) C A.

Proof. Lets € J(S). To show that s € A, i.e. Ker(s) C¢ M. If Ker(s) &€ M, then there exists a

non-zero submodule N of M such that Ker(s) N N = 0. Since Soc(M R) C°¢ M , by Proposition 2.9.6,
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there exists a simple submodule mR of M such that mR C Soc(M,) N N. Since M is principal
self-generator and mR is simple, mR = t(M) for some 0 =t € S by [17, Proposition 2.9]. By the
similar proof of Proposition 3.2.5, we have Ker(¢) = Ker(st), so t(M) = st(M) and st(M) <K M.
Thus st(M) is a small and simple submodule of M. Since M is small simple quasi-injective,
by Proposition 3.2.3, we have / (Ker(st)) = Sst, so I (Ker(f)) = Sst. We have t € I (Ker(®),

so t € Sst. Therefore t = st for some & € S. Then ¢t — st = 0. Hence (1 — as)t = 0,

so by Proposition 2.10.3, (1 — &s) has a right inverse. Thus (1 — 055)'1-(1 —as)t=(1- O{S)'I'O.

It follows that £ = (1 — Ols)'l-O =0, a contradiction. O

3.2.7 Proposition. Let M be a principal nonsingular module which is a principal

self-generator and Soc(M R) C° M. If M is small simple quasi-injective, then J(S) = 0.

Proof. By Proposition 3.2.6, we have J(§) C A, we show that A =0. Let s € A. To show that

s =0. Let m € M. Define ¢ : R — M by @(r) = mr for every r € R. Let 0 = r € R.
Then @(r) = mr = m-0 = 0. This shows that 0 is well-defined. Let r, € R and r € R.
Then @(rlr + r2) = m(rlr + rz) =mrr+mr, = (mrl)r +mr, = @(rl)r + (0(}”2). This shows that @ is

an R-homomorphism. We have rR(S(m)) o { rE€R | s(m)r = 0}

Il

{rER|S(mr):O}

{r€R| mrEKer(S)}

Il

{ rE€R | Q@) € Ker(s)}

@ (Ker(s)).
Since s € A, Ker(s) C¢M. Then by Proposition 2.3.3, we have (D_I(Ker(s)) C¢R.
Hence rR(s(m)) = (D'I(Ker(s)) CF€R, so rR(s(m)) C°R. Thus by Definition 2.3.5, s(m) is an

element of the singular submodule Z(M) of M. Since M is a nonsingular module,
by Definition 2.3.5, Z(M) = 0, so s(m) = 0. As this is true for all m € M, we have s = 0.

Therefore A = 0 as required. U
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Absstract ¢ Let M be & right R—moduale. A right 2-modole & iz ealled amall
mmple M -ingectivs if, every A-homomoerpiisme ffom & small and simple submodole
of M o & can bé extended to an B-homomorphism, from M to N, In this paper, we
pive some chersctorizstions and propertieg of small simple quasi-injeclive modules,
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1. Introduction

Lat B besring. A right B-module M is called mingnysctive |8 if, for cach simple
right kieal K of R, cvery B-homomorphiEm 5 & - W extonds o 1 egoivelently,
if ¥ = m- 5 loft multiplieation by some cloment moof M. Following 9], a right
R-module M is called principally quasi-mgective module if every B-homomorphism
from & principal submedate of M oto M can be extended to an endomosphism
of M. In [15], 5. Wongwai, introduced the definition of small principally quasi-
injeetive modules, a right B~ module N is called emall prncipalily M -injacime for
SP-M -injective) if, every i-homomorphism fom A small aod pripcipal submodols
of M to N can be extended to-an B-homomorphism from M to N A npht B
module M ¥ called small principelily guesi-injective [bricly, SP-injective) i i
B SP-M-injective, In this note wo introdoce the definition of small simple qoast-
mjective modules and pive some characterizations and properties. Some mesalts on
principally quasi-injective modoles |9 ere oxtended to these modoles.

Throughout this peper, B will be sno associative ring with identity end afl
modules arc unitary right B-modules. For right B-modules AF apd N, Homg (A )
denotes the set of all -homomorphisms from M to W apd 5 = Endg (A7) donotes
the endomorphism ring of M. IFX s 8 subset of M the rpht (pesp, it} annihilator
of X in R (resp. 8) 5 denoted by ra{X) (resp. [2{X)). By notstions, N % M,
N " M. and N« M owoe mean that N 15 adicect summeand . an sasential subimodole
and a superfioous submodule of M, cespectively. We denote the Jacobson redical
of M by J{M).
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2. Small Simple Quasi-injective Modules

Following 1|, & submodunle K of & right B-modulk M = superfinose {or gl
in M_-abbroviated K« M, in esse for every submodole I of M K + L = M
implirs L = M. It i2 clear that &R <7 R if end only if B < IR A ripht B-moduals
M1 pimple In case M 2 0 and it has no non-trvial submodobes.

Definition 2.1, Let M be & right - module. A right B-module N is eslled small
simple M -mngective i, every R-homomorphism from & small end simple submodole
of M to N can be extended to an B-homomorphi=m from A to N

Lemma 2.2, Let M and N be right R-modules. Then N i3 smell smpls M-
irgective i and only if for eock smell and simple enbmodule mlt of M,

Iy Pgim) = Homg (M, N)m.

Proof. Cleardly, Homg{M, Nim C Iy rgiml Let = £ [yrgim). Define o : mft —
21t by wimr) = rr for every ¢ & 2 Then @ is well-defined because rpim) © rpir).
It &= clear that ¢ is an B-homomorphism. Since WV iz small simple M -injective,
there exists an F-bomomorphism @ ;0 8 = N such that (3 = g, whero &
mi — M snd-iy orR — Noare-the induzion maps. Hence T = @(m) = &im)
& Homgi M, N

Convarscly, 1t mf? be g small aod smmple submodule of M and let o mil — N
be an R-homomorphism. Then oim) & sy rplm) so by assumption, @im) = S0m)
for eome @& Homp (M. N). This shows that N 15 small simple M-injective. o
Example 2.3. Let B = {5 b} where Fis o fisld, Mg = Ry and Ng = (5 5.
Then N amall simiple M-mjeetive.
Proof. It is clear that only X = (7 ) i the nou-gero small and simple submodule
of M. Let 2 - X — N be R-homomorphism. Since ([ 1) € X, there exists 111, 713 €
F such that Eﬂﬂg o)) = (=4 u'u}' Then ‘F‘[{E é.]:' =+¢=IL§ [l;:”:g EH = 'F":{: -;J:'tg E] =
(75 32) (5 3 = ("o"a?). Te Sollows thae iy — O Define & - M —+ N by §i(3 1)) =
(=12 "). It in clear that § is an B-homomerphism, Then & (3 1 = &3 1(E 3] =
FIEE N0 ) = (%575). This shows that & i an extension of . Thus N i small
simple M -injectve. i
Proposition 2.4, Lot M be o right B-moduls and lat {N -0 € T) be a family of
right t-modules. Then the direct product [, N; & small simple M -infective if
and onfy if each N, i85 pmall ample M -injeclive.
Proof (=) Let 7; and o, for each ¢ < [, be the ith projection map sod the ith
injection map, respoctivaly. We now ot @ € 1, mR & small and simple submodols
of M and lot @2 mft — N, be an - homomorphism. Then by assumption, thers
exists an f-homomaorphism 5 M — N; such thet 5 = o0 whero ez mf— M s
the inclusion map. Thas & = 55t

{+=} Let mfid be s small and simple sabmodule of A and let o mft — HEE; N
beoan A-homomorphisin. Then for esch @ & T, there exists an B-homomorpllism
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¥ 2 M — N such thet oe = i where d - mlit — M s the inclesion mep. Heonoe
we obkain (product) F - M —+ [].., ¥ with 5:F = o and 7.8 = o, which Emplies
fr=1p. 0
Lemima 2.6. Lat W; (1 = 1 < n) & emall gimple A -tmyective modules.  Then
oo N i mnall sample A -injective.

Proof. It is enoogh to prove the pesult for m= 2. Lot mi? be a small snd simple
submaodule of M and ¢ - miE — & 2 Nz be an F-homomorphism. Sinee Ay and
o mee small simple M-injective, thers oxists B-homomorphisms o - M — A
aEdd oe o M — W such that yme = wye and @i = mow where my and wg are the
projection maps from Ny B N2 to Ny and Wa, respoctivaly, snd ¢ ;iR M B
the inclusion map. Put § = tug + oga - Mo~ N B Na where 1 and ¢a are the
injection maps from Ny end N3 to Ny €8 Na | respectively. Thus it is clear that @
extonds g 0

Lemma 2.0, Any direct summand of o small simple M-injactire module f2 again
smell simple M-injective.

Proof. By definition. Ol
Theorem 2.7, The follmmmng condittions are squitadent for o projeciins modele S5

{1} Every srmcll and simple submodile of M 22 projeciive.

(2 Every foctsr module of a emnil simple M -injective modulé iz small simple
M -irjestive

(3} Every facior module of an injective R-rmodule i smiell simple M -injectioe.

Proof. (1) = (2} Let N heo a smell simple A-injective moduale, X 5 submodule
of N, mR s =mall and simple submodule of A and let 2 - mi?t ~+ N/X be an
R-homomorphism. Then by (1), therse existe an f-homomorphism o : mR — N
#uch that o = pe where 72 N — N/ X is the neourn] R-cpimorphi=m. Hence o can
be extended to an B-homomorphism 8 M — N Then g8 is so extonsion of ¢ to
M.

(2= (B} 18 cloar.

(3=+(1) Let mult be a small and simple suhmodule of M, 0 - A4 — B an B-
cpimorphism, amd kbt @ - miE — 0 be ap F-homomorphism. Embed A o an
injective module E |1, 1846, Then I ~ A.fﬁerl:u:lﬂambmnduinufﬁ.fffﬂ'{n]m
by hypothesis, o can be extended to & - M — E/Keria). Sinee M B projective, &
can be lifted to § - M — E. It is cloar thet g{mR) < A, Therofore we have [iftoed
i a

3. The Endomorphism Ring

A right J-meodule M iz callisi small siwmpls guasi-injective if it is small simple
A-injective. In this secticn, we give tome cherneterizations and properties of small
asimple guasi-injective modules.
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Lemman 3.1, Let M b oo reghi f—module and 5 = Endgi M}, Then the. follousng
oonditions are apueivaleni:

1} M 1z small stmple puesi-injeciive
(2} Ifmd? ir emall and sfmple, moc M, then lyra(m) =
i {fmﬂﬂmmﬂnndmnph-uﬁd rrim) C rrin). mne M them SnC Sme

{4} If mlt iz emall and simple, meoe M, then [y (rrimNal] = dala) + 5m for
ell @« .

{5} Jfrul? ix amndl and simple, v e M and' 2ol — M wan B-hemomorphiam,
then wim) € Sm.

Prool (1] < (2} by Lemms 2.2,

(2= (3) I reim) O rgin), where mon € M owith m® is small and simpls,
then [yra(n) © Iura(m). Since Sn © [grpin) and by (2), Iurg(m) = Sm, 30 wo
have Sno Sm.

(3=-{4) Let @ £ &, m & M with m i & small and simple and let £ € Ty {re(m)n
alt}. Then zir{m) naRk) = 0 g0 rima)  riza). If ma = 0. theo mar = 0. for all
r& i s0 ra =0 It follows that = ¢ I{a) C i{a) +Sm. If ma # 0, then mafl = mi
mnd 50 Sra L_Smbjrﬁ} Thus ra = wima), ¢ € 5 and henoe (T—@{m)) € Iy (a).
It follows that = < Iy {a) + S The other inclugion i cloar.

= Pt a=15.

(3= (5} Let mA be =mall and simple, wm & M, &nd et v 2 mR — M bean
R-homomorphism. Then egim) © rgly(ml) so by (3) we have Syim) © Sm. It
follows that vim) & Sme :

(5)= (1} Lot mR be a small and simple submodeke of M oand lot o - mB — M
be an - ]ﬁmnmu:phm Thon by (5], ¢(m) £ Sm. Write @(m) = F(m) where
@« 5 Nt imelear that & is an extension of @ 0

Lemma 3.2. Let M be a emall stmple quasi-imyective module and § = Endg{M).
Ifme M oand o€ 5 uith af M) &-small and simple, then

oK erla} nmBy= lo(m) + So.

Proof. It is always the cese that [oim) + Sa © [o{Kerfo) nmi). Let 7 €
Igier{a) N mi). Thin rgloim)] C ry(f(m)), 50 lyrp(B(m])) C lyralaim)].
Case ofm) = 1) is dear. If afm) & 0, then ool ) R is simple and small in A, henes
Sfim) C lyrplA{m)} o iyrgieim)] = Swim) by Lemme 3.1, 50 @im) = ';m{m}
+ & 5. It Tollows that {5 — vo) € lg{m), and henee § & [o{m) + So 0

Following [9. a right R-modnle M is called a principal self-generator if svery
eloment & M kas the form m = y{m; |} for some - M — mA.
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Proposition 3.3. Let M b e prencipel module wikich 5 a princpal self-generator
and st 5= Endg{M]. Then the fellowmng conditions ere equivalent:

(L) M oax small simple pueei-injecinme

(2 dgiHerfal N mi)] = lz(m) + Sa forallm € M oand o £ 5 wnth of M) 15
emnall and simple m M,

(3 IgiKerin)} = S for ol o € 5 with w8 8 small and. somple im0 50

(4} Ker{m)  HRer(d), whers @ F € 5 with olM) = small and simple m AL,
empliey 55  So.

Proof. (1] = (2} by Lemma 3.2,

(2= (3} If M = mgl, take m = mg in 2],

(3} = {d) If Ker{a) < Ker{d), then {g{fer{F)) C iz Ker{a). Tt follows thal
S8 C lg{Ker(g)) C lg{Ker(a) = Sa.

{4} = (1) Let mR he a small and simple submodule of M and o -mR — M
be an B-homomorphism. Since M = & poncipal self-gencrator, thore exizste 3 € 5
such that Flmy ) = m, 5o Ker{d] O .Fc'erl:pﬁ] amd F{ATY is smell snd simple in M.
Then by (4}, S8« 58, write vf = o8, 5 -8 This shows that 5 opxtends @, O

Theorem 3.4. Let A be o small simple quari-injective moduls, wmiom € A oand mbd
e small and smple.

(1} Ifmf embeds in nf, then St ot an mmage af S,
(2} Ifmi iz an tmage of mell then St embode in S,
(3 Jfmi e ni, thed Sm = Sn.

Proof. (I} Let f: mdf — ak be an B-monomorphizm. Let ey w2 — A and
iy ! Rt — M be the inclosion maps. Simoe A is small simple quasi-injective, there
Eists jn - huruumnrphmm;l" M —-M soch that iof = _rl]: Lot o - Sm — Smi
defined by or{e(n)) = af(m) for ewery o £ 5. Sinoeo({an]} = af(m) € olnll). o s
well-defined. ]L_[?EEEHTUHEENIE homomnorgitizm, Noto that fim )R 5 simple
and f{m}R = f{m}R < M by |1, Lemma 5.18]. Sirce { &8 momic, re{fim)) =
rr(m) and henee by Lemma 3.1, SmoC Sf{m). Thenm e Sfim) < o{Sn).

(2} By the sanw notations e in (1), let f: mit — ol bean B—opimorphism
Wﬂhﬂﬂms:l =nmn, 4 £ i Sinos Mmﬂmnﬂannpluqum injective, [ can hemtmdﬂi
Ll:lj' M — M euch thet i3] = j'L]_ Define o - 81 — 5m by ofain}] = er{m]
for every a-€ . It is clear that « is S-homomorphism. If oin) € Ker(g), then 0 =
ooyl = afims) = af(ms)] = afn). Thi= shows thet o is an 5—monomorplism.

(3} Follows from (1) and (2}, 8|
Proposition 3.5, Lad A be ¢ principad module which &2 a principal self-generaior.
IfM iz small simple guasi-injoctivg, then Soc{Mp) C ra (5]

Froof. Lot mfi be s simple submodole of M. Suppose afme) 3 0 forsome o & J{SL
Az M iz s principal solFpenerator, miE = Eﬂ_ﬂ [ M) for some [ 5. Since mi &=
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‘wogimple, i = (AL) for some £ g€ J. Then as # 0 and Kerjos) = Rerlgl
MNote that s ) 158 noneero homomorphic imsre of the @mpke (M), then s M)
is simple. Simee M 35 & principatl moduls, J{M ) < M s0 we have JIS)M < J{AM,
it follows that oei M) is & small submodole of A Since A = small simple gquasi-
injoctive, fzf{ker{xe)) = Sos. Thus [z[ker{e]) = Soe. Write s = o whoare § £ 8
Then (1 — o = 0 and 80 8 = (1 — So)~t0. It follows that & = 0, & contradiction.
O

Let A be s right - module with § = Endg (M ). Following [6], write A = {s €
S :ker{s) ©° M} It is known that A is an ideal of § 6, Lemma 3.2

Proposition 3.6, Let A b a principal module which @ o principal self-genemtor
and Soc{Mpg) < M_ I[f M = small ample quast-mmjective, ther J{S) 5.

Proof. Let 2 £ JIS) IF Kerfal @ M, then Keri(g) 0N = 0 [or some nonger
submodule N of M. Since Sr:u:;{MH] ot M, Soc{My)n N # 0 Then there exists
a simple submodule mR of M such thet mi © Soc{Mg) NN L. Corollary 9,10
Az M ie e principal seif-peperator end mit is simple, mA = (M) for some ¢t £ 5.
It follows thet Ker{s) = Ker(t], Since st{ M) is & nonzero homomorphic imege of
the simepde (A t{AM ) = (M 1IL i clear that gt[ M) <7 M. Then t € Lg(ker(t)]) =
{z(ker{st) = Set. Write f = ast where @ £ 5. Tt follows that § = (1 — as)—'0. Then
t =0, & contrediction. B

Proposition 3.7. Lot A b e prineipal nonstngular module which {2 o principal
zelf-genemtor and Soe{ My o M- I M iz small simple guazi-ingective, then
J[E) =0

Proof. Since J{5) < A by Proposition 3.6, we show that A =0 Let 2 £ A and
IﬂmEM-DﬂEﬂEIp:R—rMby:p{r]:mﬁnrnﬂlryrEﬂ. It i& clear that i is
‘an R—homomorphizsm, Thas

ralaim}}={r € R s(mr) =0}
=ArceR:mr& Ker(s)}
={r€ Ripir) € Ker{d))
=@ Y Ker{e)).
It follows thet ¢-'{Ker(s)) <= R |4, Lemms 5.8{a)] o rp(#(m)) = B Thus

x[mﬁi;EiHH]_DhmMmmﬂmguhr A= this is true for all m & M, wo
have g = . Heneo M = () 88 required. 8]
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