บทคัดย่อ

พี่ล์มบางไททาเนียมไดออกไซด์ถูกเตรียมลงบนกระจกสไลด์โดยวิธี ดีซี แมกนี้ตรอน สปัตเตอริง สมบัติทางโครงสร้าง สภาพพื้นผิว สมบัติทางแสง และความเป็นไฮโดรฟิลิกของฟิล์มบางไททาเนียมโดออกไซด์ ถูกศึกษา วิเคราะห์ ด้วยฟังก์ชันของตัวแปรอัตราการป้อนก๊าซออกซิเจน กำลังไฟฟ้า และความหนาฟิล์ม ฟิล์มไททาเนียมไดออกไซด์ที่เตรียมได้นั้นถูกนำมาตรวจสอบด้วยเครื่อง XRD, AFM, Spectrophotometer และ Contact angle meter จากผลของการทดสอบด้วยเครื่อง XRD พบว่าฟิล์มบางไททาเนียมไดออกไซด์ที่ความหนา 100 nm มีความเป็นอสัณฐานทั้งหมด เมื่อความหนาของฟิล์มเพิ่มขึ้น เป็น 300 nm ฟิล์มจะเริ่มแสดงความเป็นผลึก ค่าความขรุขระพื้นผิวและขนาดเกรนมีค่ามากขึ้นด้วยการเพิ่มค่าของกำลังไฟฟ้าที่ใช้ในระหว่างกระบวนการสปัตเตอริง ความหนาของฟิล์มไททาเนียมไดออกไซด์ มีค่ามากขึ้น ด้วยการลดปริมาณก๊าซออกซิเจนและการเพิ่มค่ากำลังไฟฟ้า สมบัติความชอบน้ำของฟิล์มไททาเนียมโดออกไซด์ มีกำมากขึ้น ด้วยการลดปริมาณก๊าซออกซิเจนและการเพิ่มค่ากำลังไฟฟ้า สมบัติความชอบน้ำของฟิล์มไททาเนียมโดออกไซด์ มีกำมากขึ้น ด้วยการลดปริมาณก๊าซออกซิเจนและการเพิ่มค่ากำลังไฟฟ้า สมบัติความชอบก้ำของฟิล์มไททาเนียมหิวฟิล์มจะถูกวัดหลังจากนำฟิล์มไปฉายรังสีอัลตราไวโอเลตด้วยความเข้ม 1.2 mW/cm² ค่ามุมสัมผัสหยดน้ำมีค่าลดลงเมื่อเพิ่มอัตราการป้อนก๊าซออกซิเจน กำลังไฟฟ้า และความหนาของฟิล์ม

กำสำคัญ : ไททาเนียมไดออกไซค์, ไฮโดรฟิลิก, ดีซี แมกนีตรอน สปัตเตอริง

Abstract

Titanium dioxide (TiO₂) thin films were prepared on glass slide substrates by DC magnetron sputtering. The structure, surface morphology, optical property and hydrophilic activity of TiO₂ thin films were investigated as function of O₂ flow rate, DC power and film thickness. The TiO₂ films were analyzed by X-ray diffraction technique (XRD), atomic force microscopy (AFM), spectrophotometer and water contact angle meter. From XRD patterns of TiO₂ films for 100 nm thick, they indicated that films were amorphous. The crystal structure of TiO₂ films was found when the film thickness increased to 300 nm. The surface roughness and grain size were enlarged according with the increasing of the DC power while the substrate temperature was climbed up with the increasing of the DC power. From the point of energetic ion bombardment, it was related with DC power between sputtering processes. The film thickness of TiO₂ increases with the decreasing of O₂ flow rate and the increasing of DC power. The hydrophilic activity of TiO₂ films were analyzed by the water contact angle. For testing this, the water drop contact angle on the TiO₂ films surface was measured after being irradiated by UV radiation with intensity of 1.2 mW/cm². The water contact angle showed decreasingly against the increasing of the O₂ flow rate, DC power and film thickness.

Keywords: TiO2, Hydrophilic, DC Magnetron Sputtering