52 71saSIANSSUANEAS S1BUVAA

AN INTERACTIVE DEBUGGING TOOL FOR C++
BASED ON DYNAMIC SLICING AND DICING
PART I: DEFINITIONS AND ALGORITHMS

Winai Wichaipanitch' and M. H. Samadzadeh®

Abstract

The main ob]actwe of this work was to
deve]op an interactive debuggmg 100l for C++
programs.. -}:Thg tool th_at -was devcloped is called
C++Debug and it ﬁsesprognam §licii‘_1g‘ and dicing
techniques. The design started by including simple

statements first and then ‘expanded to pointers,

structures, functions, and classes. In order for

C++Debug to be more powerful dynamic slicmg

rather than statlc shcmg was chosen. The work

mcludes new algoruhms that hand_lc 'Class,
Funcnon, and Pointer i in C+. . |
The rvesults of tl'us work are reported i in two
parts:
PART I: Definitions and Algorithms,
PART II: Implementation, Testing, and
Evaluation.
This is part I that reports on the deﬁﬁ_iﬁons
and algorithms, how to compute a slice, and the

dicing procedure.
1. Introduction
Since the article “Program Slicing” by Mark

Weiser was initially published in 1981 [10],

program slicing has gained wide recognition in

both academic and practical arenas. Several
debugging tools have been developed that utilize
program slicing. For example, Focus [6] (designed
and implemented by Lyle in 1984) was designed
to be used with Fortran programs, and C-Sdicer
[71[8] (designed and implemented by Nanja and
Samadzadeh in 1990) and C-Debug [9] (designed
and implemented by Wichaipanitch and Samadzadeh
in 1992) were designed to be applicable to C
language programs based on dynamic slicing.
Program slicing [1][2][10][11][12][13] is one of
the debugging methods used to localize errors in a
program. The idea of program slicing is to focus
on the statements that have something to do with a
certain variable of interest (criterion variable), with
the unrelated statements being omitted. Using
slicing, one obtains a new program of generally
smaller size that still maintains all aspects of the
original program’s behavior with respect to the
criterion variable. Dynamic slicing differs from static
slicing in that it is defined on the basis of a
computation or an execution rather than on all
possible computations. Furthermore, it allows one
to treat the elements and fields in dynamic records
as individual variables [5]. As a result, the slice
size computed based on the dynamic slicing
technique is generally smaller. Moreover, dynamic

slicing allows one to keep track of the run-time

' On leave from Computer Engineering Department,Faculty of Engineering,
Rajamangala Institute of chhnolngy, [\lDIlL 6, pratumthani, Thailand.

B T L L I s T T B e R g e i ¥ T3 Ly S P gt

e e el g B S U 0 e i o e o v gl 1A T e R

21SANSIAINSSUANARS SsUvAa 53

type binding (involving the type of each object)
that is unknown at compile time but is determined
when the program is executed. Dynamic slicing
technique was used in this study. Dicing technique
[6][7](8] can then be used to compare two or more
slices resulting from the program slicing technique
in order to identify the set of statements that are
likely to contain an error. The formal model of
static/dynamic slicing/dicing is presented. There
is a need for debugging tools that are capable of
making some deductions regarding the presence and

location of errors in programs.

2. Definitions

A number of definitions and algorithms
originally introduced by Korel and Laski [3][4][5]
were modified, in order to compute slices in classes,
objects, arrays, pointers, references, dynamic
allocation operators, function overloading, copy
constructors, default arguments, operator overloading,
inheritance, virtual functions, polymorphism,
templates, and exception handling of a C++ program.
Those modified definitions plus a number of new
definitions and algorithms are introduced in this
chapter.

Based on Korel and Laski’s work [5], let the
flow graph of a program P be a directed graph
(N,A,s,e) and C be a slicing criterion, where N is
a set of nodes, A is a binary relation on N (a subset
of N x N) referred to as the set of arcs, s eN is a
unique entry node, and e e N is a unique exit node.

Each node in N consists of one statement,
including a single instruction, a control instruction,
and a function instruction. A single instruction can

be, for example, an assignment statement or an input

or output statement. A control instruction can be
such statements as an if-then-else statement or a
while statement, which are also called test instructions.
A function instruction can be either a called or a
calling function instruction.

An arc(n, m) e A corresponds to a possible
transfer of control from instruction n to instruction m.

A path from the entry node s to some node k,
k eN, is called a sequence Dy N, ey nq> of
instructions, such thatn = s, B k,and (n,n_)
e A, for all n, 1<i<q. If there are input data that
cause a path to be traversed during program
execution, the path is feasible. A feasible path that
has actually been executed for some input is called

a trajectory.

Definition 1. Let X be an instruction in a program
and X e IN" (the set of non-negative integers).
Let P be the set of instruction numbers in a tested
C++ program, then P = [1, 2,..., n} represents a
program of length n, where n is the size of the
program

P = [Xlforall Xwithl< X <n]

where n = length of the program.

Definition 2. Let Fmr be a function, i.e., a set of
instruction X's in the scope of influence of the
function name, where all blank lines are ignored.
mec cP, and me - Fmin if the program has one
function.
Fo.. = | X | for all X withi < X <k}

where (1) iis the starting line number of function

name, i € P

(2)k is the ending line number of function

name, k e P

— e e

54 01SA1SIAINSSUANAAS SIBUVAA

Definition 3. Let T be a trajectory, i.e., a feasible
path that has actually been executed for some input
[5]. A trajectory of length m is denoted by a list
Te= <Xl, Xa, sl Xm>, where X is an instruction of

a tested C++ program.

T = <Xl forall X, where Xs are in a feasible _

path executed for some input and Xe P >

Definition 4. Let TF“m be a function trajectory, i.e.,
a feasible path of a function name that has actually
been executed for some input. TF _is a sublist of
T. If a trajectory of length m is denoted by T =
<X], Xz, -y X_>, then the function trajectory name
is denoted by Tme = <Xi, XM, Shex Xk>, where Xi,
5, e)(k are a list of the instruction X’s which

1l
are in the scope of a given function me, where i
denotes the position of entry node and k denotes the
position of ending node of the function name,
(1<i<k,andi<k<m).
Tan = < X | for all X, where X’s are in a
feasible path executed for some

input, X eF ,andXeT>

Definition 5. Let action be pair(X,p), i.e.,
instruction X at position p, which will be replaced
by X" for brevity and ease of understanding [5].
An action X" is a test action if X is a test instruction

such as while or for.

Definition 6. Let M(T) be a set of actions in a
given trajectory T, where M(T) = { X" : instruction

X at position p in trajectory T } [5].

Definition 7. Let M(TFHW) be a set of actions in a
given function of a given trajectory TF ., where
M(TF“W) = | X" : instruction X at position pin
trajectory TF |} M(TFm.,) is a subset of M(T).

Definition 8. Let C be a slicing criterion, which is
the specification for a particular behavior of interest.
A slicing criterion can be expressed as the values of
some set of variables at some set of statements [10].
If we let T be the trajectory of program P on input
X, a slicing criterion of program P executed on x
can be defined as a triple C = (x, I, V), where I' is
an action in T and V is a subset of variables in P

[5].

Definition 9. Let D(X") be the set of variables that
are defined in action X*, where X" e M(T).

Let DFW(X") be the set of variables that are
defined in action X", where X" ¢ M(Tme).

Definition 10. Let U(X") be the set of variables
that are used in action X", where X" e M(T).
Let Uan(Xp) be the set of variables that are

used in action X", where X* eM(Tan).

Definition 11. Let LF“_m (X") be a set of variables
and C++ preprocessors that are declared as a local

declaration in function name.

Definition 12. Let DU be a Definition-Use Relation,
a relation in which one action assigns a value to an
item of data and the other action uses that value
[5]. Instead of using M(T) as Korel and Laski did,
M(TF“m) was used in this work in order to compute
a slice from functions or classes.

Let M(T“ch) be a set of actions in a given

trajectory TF . DUan’ a Definition-Use-

Function Relation, is a binary relation on
M(TF) defined as follows:
Let TFW = <X.’ XM, Y X‘, e Xk>,

3 DUF Y, i < p <ty iff there exists a

c

variable v

21SAISDAINSSUANARS SsuvAa 55

such that (1) ve UF (Y"), and

(2) X"is the last definition of v at t
where, the last definition X" of variable v at t is the
action which last assigned a value to v when t was

reached on trajectory TF .

Definition 13. Let LDR be a Local-Declaration
Relation, a relation in which one action declares a
variable and the other action defines or uses that
variable.

Let M(TFM‘) be a set of actions in a given
trajectory TF"m. LDRFm, a Local—DecIarationnm
Relation, is a binary relation on M(TFW) defined
as follows:

Let TE =<X, X , w0y X, .0y X2,

X"LDRF Y\ i<p <t iff there exists a

variable v
such that (1) v eUme(Y') U DFMM(Y‘), and

(2) X"is the action where variable v was

declared in trajectory TFnam:'

Definition 14. Let TC be a Test-Control Relation,
capturing the effect between test actions and actions
that have been chosen to execute by these test actions
[5]. Instead of using M(T) as Korel and Laski did,
M(Tmec) was used in this work in order to compute
a slice from functions or classes. Let M(TF..,.M) be
a set of actions in a given trajectory T o TCF“W_,
a Tcst—Contro]—Funciionmw Relation, is a binary
relation on M(TFME) defined as follows:
Let TE = <X, X ey Xy oy X 2y
X"TCch Y,i<p<t,iff
(1) Y is in the scope of influence of X, and
(2) forallk, p<k<t, T(k) #¥X
where, the scope of influence is defined as follows.
(1) if X then B1 else B2; Instruction Y is
in the scope of influence of X iff Y is in
B1 or B2.

(2) while X do B; Instruction Y is in the
scope of influence of X iff Y is in B.

(3) do B while X; Instruction Y is in the
scope of influence of X iff Y is in B.

(4) case X do B; Instruction Y is in the
scope of influence of X iff Y is in B.

(5) for X do B; Instruction Y is in the scope
of influence of X iff Y is in B.

(6) function X do B; Instruction Y is in the

scope of influence of X iff Y is in B.

Definition 15. Let IRFW be an ldentity Relation
in Functionmm, then X° IRFHMc Y, iff X = Y is the
identity relation IRme on M(From(Tane,q)),
where From(TFm,q) isasublistof TF consisting
of the first q elements of TF , where TF =
<XI_, XM, sy Xt, Sses Xq, iy Xk> denotes a function
trajectory, (is a position in TFW, 1 <i<t, and

t<q=<k.

Definition 16. Figures 1 and 2 present a part of the
trajectory of FuncA(int i) and FuncB(int j), where
called FuncA(int i) is called by calling FuncA(5)
at X", and called FuncB(int j) is called by calling
FuncB(2) at X"'. From Figures, we find that
T = Gy KX o XX ey XL X e
Ko o X R B un XX,
...>, where i<j<k, l<m<n and X is any statement in a

program P, TF_ =< X

cA

S6 1sa1SHAINSSUANARAS SI5U0AA

Front(TF , 141)

X4 | FuneBint j) {

i Front(TFy 5 k) 1" Siep:
il Compute a ﬁhccl on

variable U'at X
C=(xX"{U))

Back(TFp,.0k)

2% Step:

Adter finishing

computing a slice

iu FuncB,
Back{TF 01+ 1) computing a slice

m FuncA will be

started here.

X 1)

X*! FuncA{S):
3o

Fig. 1 Illustrate Called-to-Calling

XX e XX R X el TP
= <X, .., X5 XM, L., X5, Functions FuncA
(int i) at X' and FuncB(int j) at X**' are called a
called function instruction. An action X" is a called
action if X is a called function instruction. FuncA(5)
at X"' and FuncB(2) at X"' are called calling
function instructions. An action X" is a calling action
if X is a calling function instruction.

Called-to-Calling occurs when a slice is computed

X

xl 1

X' | FuncAfint i) {

xl- I

X 1" Part of
Front(TFusm)

x]

XFUE FuncBlim »

X y=UsViHS TR,
Xe

X iy

XU 7 = FuncB(2),
) % 2™ Pant of

: g | Froa(TFuam) Compute a slice on
A" 1 O0=Z+ P «F—————— vanable Zat X"
f C=(xX"{ZhH

Back(TVppqm)

Xy

X! FuncA(S):
.\'lnl

Fig. 2 Illustrate Calling-to-Called

from a called action first and then from a calling
action. For example, in Figure 1, suppose one needs
to find a slice of variable U at X*. The process
starts from X" (which is in the scope of influence of
called function FuncB(int j), which is called by
calling function FuncB(2) at X""), and then X',
X!, respectively. We find that called action X'
comes before calling action X"

Calling-to-Called occurs when a slice is
computed from a calling action first and then from
a called action. For example, in Figure 2, suppose
that one needs to find a slice of variable Z at X".
The process starts from X", and then X' (since Z
is last defined at X'*' and used at X™) and then X'
(since called FuncB(int j) is called by calling
FuncB(2)), respectively. We find that calling action
X'""! comes before called action X''.

Modified from Korel and Laski’s approach [5],
let TFm = <Xi, XM, XM, Gy Xk> be a trajectory of
function name, and g be a position in Tan’ i<q
k. Then Front(Tme,q) is a sublist <X, X, ...,
Xq> and Back(Tme,q) is a sublist <Xq‘1, Xm.z, v
X > as shown in Figures 1 and 2. All Back (TE_,q)’s
can be ignored in computing a slice. Just Front
(Tan’q) must be concentrated on.

Let A and B be two functions, where function
A calls function B. Therefore, a slice can be
computed in two different ways as follow.

1) Called-to-Calling

Total sliccm = Slicz:B) Sliccﬁ

where

(l)SliceH is a slice computed based on
From(TFB,k) and slicing criterion
C=(xXV)

(2)SlictA is a slice computed based on
From(TFA,l+1) and used variables at
calling action X"*, U(X"").

SANSIAINSSUANARS S1sUvAa 57

2) Calling-to-Called
Total slice = Slice U TF
AB A B
where
(1)Slice_ is a slice computed based on

Fronl(TFA,m) and slicing criterion

C=(x,X", V),
(2)TFB is a function trajectory of function
B.

Let Calling(X") be a set of calling functions
that are used to call a called function in action X",
where X" e M(T).

Let Called(X") be a set of called functions
that are called by a calling function in action X",
where X" e M(T).

Let EI be a Called-to-Calling Relation
between called and calling functions. Let M(T) be
a set of actions in a given trajectory T of length m.
El is a binary relation on M(T) defined as follows:

Let T= <X, X 5 ooy Xy o0y X 2,

X"EL'Y', t < p < m, iff there exists function f
such that

(1) a called function f € Called(Y"),

(2) a calling function f e Calling(X"), and

(3) X"is the calling action, where the calling

function f at p calls a called function f at t

Let IE be a Calling-to-Called Relation
between called and calling functions. Let M(T) be
a set of actions in a given trajectory T of length m.
IE is a binary relation on M(T) defined as follows:

LetT=<X, X, iy X, 00y X >,

X"IE Y, 1 < p <, iff there exists function f
such that

(1) a calling function f € Calling(Y"),

(2) a called function f e Called(X"), and

(3) X"is the called action where the called

function f at p is called by a calling function

fatt

Definition 17. To find the slicing set Sc, we first
find the set A”of all actions that have direct influence
on V at q and on action I, A’ is defined as follows
[5].

A" =LD(g,V) ULTAH) U I
where LD(q,V) is the set of last definitions of
variables in V at the execution position g, and LT(I")
is a set of test actions that have Test-Control
influence on I'.

We will find S_iteratively, as the limit of a
sequence S°, S, ..., 8", 0 < n < q, which is defined
as follows.

S°=A"and §"' = §' U A"
where

A" = [X"eM(TF):1l<p<q,

(1) X" eS', and

(2) there exists Y'eS, t<q, X" Z Y'}|

where Z = DU U TC U IR u LDR
Finally, we can get the slice from the following
definition.

s =5

where S"is the limit of the sequence {S'}.

Definition 18. Let FN(q) be a string of function

name such that X", X is in the scope of influence.

Definition 19. Let G(X) be a set of variables and
preprocessors that are declared as a part of global
declaration. G(X) is computed from the source

program, not from a trajectory path.

Definition 20. Let VDU(FunctionName) be a set
of variables that are used, Uan, and defined,

DF , in a given function name.
name

§8 J1saIsIAINSSUANERS S15U0AA

Definition 21. In order to find the scope of influence
of each instruction, variable scope, VS, and control
scope, CS, are used as defined bellow.
1. Variable scope, VS, gives the information that
the variables that used or defined in each instruction
were declared at what instructions.

Let X

b |
variables such as “int I;”.

be an instruction that declared

Let XDU be an instruction that used or defined
the variables declared by X ..» Where variables that
are used or defined are in the scope of influence of
the variables that are declared in Xm.' For example,
“I=I+1;", which is the first 1 is defined and the
second I is used both are declared by “int I;”.

Then we get VS(XDU), a variable scope

relation at qu‘ which is a set of instructions X

where Xmi is in the scope of influence of XDCL.

2. Control scope, CS, gives information about
instructions that are in the scope of influence of
control instructions such as test statements, functions,
and classes. For calculation of the scope of influence
of each statement, the me_too set is used [6].

Let X be an instruction, the me_too is a set of
instructions that are in the scope of influence of
instruction X.

Due to the complexity of the C++ language
and in order for C++Debug to be applicable to
programs containing functions, classes, namespaces,
unions, structures, and preprocessors (a separate first
step in compilation, e.g., #include, #define, or #if),
the me_too set was modified according to the rules

shown in Fig. 4

Instruction (X) Prototype Called Calling D U DCL VS |8
1: #include <iostreants clude
2
3 class Compute { Compute(01) 26
4 private:
5 im Max; Max(02) 3
6 float Num{4}); Num{(3) 3
T
8 public
9 Compute(imt M, float *N) { Compuite((1 M{O £
1 Max =M, Max(02) | M{O4) N(05) 59 4
11: cout<<"allocate mem"“<<endl, cout{(7) endl((8) 9
12: for(im 1=0; I<Max; ++1) Num{03) | Maxt02) N(O5) 569 |9
Num(l] = N[I} 09 | 109) 1(09) 9
13: 9
14 }
15 9
16. float Sum(void) {
17 float Tsum = O Sumf 10) 32
I8 for(int 1=0; l<Max; ++1) Tsumi 11 | Maxi02) Numi03) Tewmill) | 5617 |1
Tsum = Tsum + Num/I]:] Tsum{11) 1(12) I(12) 16
19 12y 16
200 return Tsum, Tsum{11} 17
2y
35 5 16
23 Noat Avgivoid) { 16
24 return Sum{)(Max + 1); Avp(13) Sumd 10) Max(02) 5
25) 32
26) 5
27. 23
28 main () { 23
29. intMax =4, main{ 14) Max(15) 3
30 Moat Numi4] = {10.0, 20,0, 15.0,50}; Num(16}
31: Compute A{Max, Num}; Computed0] Max(15) Num(16) AT 92930 |34
32 cout<<A Sumy }<<endl: Sumi 1) cout{07) endl{O8) A(17) 31 28
13 couts<A Avg(<<endl: Avg(20) cout(07) endi{O8) A(17) k1] %g
34
: 28
8
28

Fig. 3 The Prototype, Called, Calling D, U, DCL, VS, and CS sets [or the program depicted in Fig. 8

21SANSIAINSSUANARS S1UVAA 59

1. For any straight-line instruction, the S set must contain’

1.1 Instruction of which it is in the scope of influence
2 For any control instruction. the (' set must contain:
2.1 Instruction of which it is in the of influence
22 Instruction representing the beginning of the scope of
intluence
23 Instruction representing the end of the scope of influence
In case of functions, the ©5 set of that instruction must contain
31 Instruction of which it 1s in the scope of influence
32 Instruction representing the begimming of { he scope of
influence
3.3 Instruction representing the end of the scope of influence
In case of classes, structures. unions. and namespaces, the 72
set of that instruction must contain
4.1 Instruction representing the beginning of the scope of
influence
4.2 Iustruction reg

Tk

-

g the end of the scope of influence
Fig. 4 Rules for computing the CS set

and will still be called the control scope, CS, set.

Based on the rules in Figure 3, Figures 4
shows an example of computing the CS set of a
tested program that computes the the sum and
average of a set of numbers in Figure 8.

To find the final slicing set F!i with scope, we
first find the set S° of all instructions that sliced
from the tested program P based on slicing criterion
C(x,I%V). S°is defined as follows.

$°=s
where Sc is a slicing set defined in Definition 17.

We will find F5 iteratively, as the limit of a
sequence F, F', .., F', 0 <i<n, n= length of
program P, which is defined as follows.

FF=8and F'=Fus"
where

S"'={ XeP:1<X<n,n= length of

programP,
(1) X¢ F, and
(2) thereexists Ye F, X e Z(Y))
where Z = VS € CS
Finally, we can get the final slice with scope from

the following definition.

F=F

%

where F'is the limit of the sequence (F'}.

3. Algorithms

Figure 5 presents the algorithm designed and
implemented for C++Debug. The algorithm is
separated into 4 parts: Datastructures, Initialize,
PASS I, and PASS II. The Initialize part is used to
initialize variables, files, etc., when the program
starts.

The objectives of PASS I are to create
databases and to create a trajectory T. All
computations in PASS I are determined based on a
source code program. The databases are used to
collect the necessary information used in PASS 11
such as Symbol Table, List of Reserved Words,
List of Basic Types, Types, Identifiers Information,
Scope of Influent, etc. The trajectory T is created
by a tool named cpptrace.

PASS II uses the information in each database
and the trajectory T from PASS I to compute a set
of slices. First, a slicing criterion comprising of a
set of variables V and position q is entered. After
that, each slice of each variable in set V at position
q is computed one by one. The process starts with
finding a slice inside the function where position ¢
is at, until finished. Then the algorithm goes to its
calling function and starts to find a slice in this
calling function again. The process is repeated until

the final slice of the calling function named main()

is computed. Clearly, the slice of each variable in

the set V is computed based on all functions that
related to each variable in the set V starting from
the function where position q is at, its calling

function, ..., and end at

60 H1sa1SHIAINSSUANARS SI5UVAA

Datastructurcs
Begin 3
loitialize(): 't mitialize files, variables, ete.;
IHPASS |
/7 compute from source code program P
Cmee_lnfotma!im_l)aubnse(l’}
.' compute trajectory code T
! see Definition 3
‘: by using tool named cpplrace
T = gen_T(P):
i PASSII
11 compute slices from trajectory T
I=1
i slicing eriterion at position g
i# on a set of variahles V
C = Read_Critenon(), '/ see Definition 8

while (CV = “Exit” } { [to check not exit the program
S[01={} it elear temporary slice storage
while (C.qz 1 and C.q = MaxTraj) { .'i Is C.g a valid number
{in the trajectory T 7
STEP L 1 compute slu:.e in called function
5{0] $[0] U Compute_Slice_in_Function_Name(C):

1[(!"‘\(C q)) == "main™) i1 check called-1o-calling function

then i finish computing a slice for each variable
break: / then break the loop
else
XPELYL Y'€S[0] / get a new position of its calling function
Cq=X" ti see Definition 16
i
STEPIII: /i add scope of influent to complete each

slice
Slice(I] = Add_Scope_of_Influeni(S[O])

4+
€ = Read_Criterion{): // get a new slicing criterion at
if position g on a new variables V

i finally we get each Slice[l] for each vanable V{I]

/1 at a specific pasition §'s
end

I function 1o compute the scope of influence of 4 shice
Add Hoopc_of_]nﬂucnl(arrayll .n] of setfaction]) {
scope of influence to a shice,
§ = Var_Control_Scope (3): {/ see Deftnition 21
retam 5,

Fig. 5 Algorithm to computc a sct of sliccs

Step 1.1: / function to compute a slice without its scope of
influence

Compute_Slice_in_Function_Name(SliceCriterion C) {
i get function name, see Definition 18
mame = FN(C.q),
i compute a sublist Tunction trajectory, see Definition 4
TFname = SubT(LEC);
/i compute defined var, see Delimtion 9
DFname = ComputeDFname(Fname);
I compute used var., see Definition 10
UFpame = Computel'Fname(T Fname),
1 compute defined used rel, sce Def, 12
DUFname = Compute DU name({TFname);
il compute test control rel , see Del. 14
TCFname = Compute TCFaame(TFname);
if compute identity rel . see Defimition 15
RFname = ComputelREname(TFname):
7 compute local declaration relation see Definition 13
LDRFname = Computel.DRFname(TFname);

Step 1.2: /f compute a slice in a function name. see Deflinition 17
5 = ComputeSlice(DUFname. TCFname, IR Fname.
LDRFname, C);

Step L3 I see Defimtion 16
X" IEY, Y'E€S)
to-Called function
name = FN(p) // get calling function name
S=SUTF,, [/ wherelE aCalling-to-Called function,
115 an element of S
retumn (S);

1 check Calling-

Fig. 6 Algorithm to computc a slice of each function

function main(). Compute_scope_of_influence

Fig. 7 Function to compute the scope of influence of a slice

(C) makes the final slice completed by adding some
statements that may govern each statement in the

slice.

4. Examples: How to Compute a Slice

The program in Figure 8 computes the sum
and average of integers. In this example, variable
Max is 4 and the array called Num contains 10.0,
20.0, 15.0, and 5.0. Upon completion of program
execution, the program should yield one results as
12.5. However, this program contains an error in
line 24. Rather than return Sum()/Max, the
program computes return Sum()/(Max+1), thus
yielding an error (Avg = 10.0 instead of 12.5).
To localize such an error, program slicing and dicing
techniques can be used. The trajectory of the

program in Figure 8 is shown in Figure 9.
Example 1. Consider trajectory T in Figure 9.
Using the criterion C = (x, 33", {Avg]), we have

= (Max,Num) = (3, (10.0, 20.0, 15.0, 5.0)).

The step-by-step trace of the algorithm in Figure 5

I #include <iostreame>

3: clags Compute {

4. private:

S int Max;

6 float Nam(4]:

1

8 public;

9 Compute(ml M. float *N) {

10 Max =

1 coute<"allocate mem “<<endl;

12: fortint I=0; l<Max: ++1)
Num(1] = N[I}:

13;

4}

15

16 foat Sumvoid) {

17 float Tsum = 0;

18 for(int [=0; I<Max; ++1)

Tsum = Tsum + Numf{l].

SAISIAINSSUANARS SsuoAa 61

19

20 return Tsum,

21

22

23 floeat Avglvoid) {

24, reburn Sun) Max + 1)
s ¥

26 }

2T

28 main () {

29 ot Max = 4;

A Moat Num{4] = {100, 200, 150, 50},
Al Compute A(Max, Num);

32 cout<<A Sum(j<<endl; "
33 cout<<A Avgl)<<endl:
34
Fig. 8 A program for calculating the sum and average of a
set of numbers
28" main() {

2% gt Max =4
30° float Num{4] = {10.0, 20.0, 150, 50};

9* Compute (int M, Moat *N) {

1 Max = M: allocate mem

11" cout<<"allocate mem"<<endl;

12’ for(int 1=0, l<Max: ++1)
Num[0] = N[0

12% for(int [=0; l<Max: ++1)
Num{1] = N[1];

12 forint 1=0; 1<Max; ++1)
Num(2) = N[2]:

12 fortint 1=0: I<Max: +41)
Num|3] = N[3];

|4“

31" Compute A(Max, Num):

16" float Sumi{void) {

{7 float Tsum = (;

187 for{int 1=0; [<Max; ++1)
Tsum = Tsum + Num]0}:

18" for{int 1=0; I<Max; ++1)
Tsum = Tsum + Num[1]:

187 for(int 1=0, I<Max: ++1)
Tswim = Tsum + Num|2];

18" for(int [=0; I<Max: ++1)
Tsum = Tsum + Num[3]:

20" return Tsum: 50

327 coumt<<A Sum{)<<end!:

23 float Ave(void) {
247 return Sumdy{Max + 1.

16" float Sumivoid) |
17 float Tsum = 0);
18 forfint 1=0, I<Max: ++1)
Tsum = Tsum + Num[0]:
b for(int 1=0; [<Max: ++])
” Tsum = Tsum + Num(1]:
18 for(int [=0; l<Max, ++1)
Tsum = Tsum + Num|2],
15 For(int 1=0); [<Max; ++1)
Tsum = Tsum + Num[3];
bIig return Tsum; 10

33" coute<A Avg()<<endl:
3y

T =<2829 3009 10°.11°.127.12% 127,12, 147 312 167 17,
185 18" 1817181, 201°.32% 233 247 163 174182 18,

IR I8 207 33% 340
TFug =<28'29°30' 31" 32% 337 341>
Theampe =< U0 110120125127 1240 141
TFe, =<16% 170185 18 187 18" 201>
Ty = <167 170185 18 187 187 207>
Ty =247

Fig. 9 The trjectory of the program from Figure 8 on input data
Max =4, Num = (10.0, 200, 150, 5.0)

follows.
Step 1:

S[0] =S [0] L

Compute_Slice_in_Function_Name(C)

Step 1.1:

FN(C.q) = FN (30) = “main”

// therefore compute slice in function Imain)

compute Tme // as shown in Figure 9
compute LDF__ = // as shown in Figure 10
compute DUme // as shown in Figure 10
compute TCFm_ // as shown in Figure 10

DUFy,,, ={} LDRF,.(29%) = {317}
TCFua ={} LDRFy.(30%) = {31%)
IRFyy, ={}

Fig. 10 The DU, TCF,,, LDF,,,,. and IRF,,,, relations
that are called by 32 for the trajectory depicted in

Figure 9
R
={127.12°.12'%
IRF o 12) = {12712%12")}
TCF canpue zH?.’.lZ‘.If} IRF gupual 12'%)
DR Fompend ') = {10%,12°,12% 12" 12"}

Fig. 11 The DUFcempuee TCT goupuse LD comper 21 IR-F o

relations that are called by 32 for the trajectory
depicted in Figure Y

DUT,, (18T = {187}
DUF (181 = {187}
DUF,(187) ={18"%}
DUE,{18'") ={20"}
TCFoom ={}
LDRF, (17" = {185, 18" 18", 18" 207}
Fig. 12 The DUF,,,, TCF,,,. LDF,,,, and IRF,,, relations
that are called by 32 for the trajectory depicted in

IRF,.(18%) = (18" 18", 187}
IRFe(18') = {18,18".18"}
IRF;,,(18") = {18'%.18" 18"}
IRF,, (18" = {18, 18% 18"}

Figure 9
DUF (189 = {185} TRF,(18%) = {185 [§7 157}
DUI‘:.:IIS"') = {187} :Rr-:us*j) = {185 187 187"
DUFg, (187) = {18} IRF,,(187) = {18 18718}
DUF (18" = {207} [RFe (18%) = {18%.18%.187)

TC s ={}
LDRFe,, (17%) = (18718 18", 18 20}
Fig. 13 The DUF,_, TC!‘,“:LDF,._. and IRF g, relations
that are called by 24%* for the trajectory depicted in
Figure 9

DU, = () T =1} i =17

Fig. 14 The DUF, . ’I‘CI-‘M. and IRFM relations for the
trajectory zfepicled in Figure 9

compute IRF_ /7 as shown in Figure 10

compute LDRFm,m/ / as shown in Figure 10

62 21SA1SIAINSSUANAAS SIBLVAA

Step 1.2:
S = ComputeSlice(DUF _,TCF
IRE_,LDRF_ ,C)
Since C = (x, 33", [Avg]) // given

LD(30, {Avg}) = {}, LT(33%) = (28'}, 1= 33"
A’= (28',33%), §°=(28',33%),
Al= 31", s'= (28", 31",33%),
A% = (29 30%), S¥ = (28", 207 80,
3, 33",
A’= (], s* = (28", 297 307,
383",
s =§° = (28, 297,
30°%, 31"%,:38"}
Step 1.3: Check Calling-to-Called functions
Yes, since {23*'} IE {33*), and (9"} IE
{31,
FN(4) = “Compute”, and FN(21) = “Avg” ,
Sc A Sc TFCurnpul: ket TFMS,

TF =, ¢ 9% 10% 11%,19% 19,12,
Compute ’
1210, 1411 >
M, = < §8% 8475,
Avg

S = {28, 20" 30° 9% 10°, 11°, 12,12,

197 197 14", 81", 23, 24 33,
since {16°%) IE {24},
FN(23) = “Sum”,

S: i S&' UTFSum,
TE == 1682417418 .08%,18%,18%,
2029 >,

Finally, we get S[0] = S[0] v SL_
= (28" 2¢%,30° 9% 10%, 11%, 12, 12%,
197, 127 14", a1t oa au® 16”7
L7 Ae®, 18" 18%. 187, 20% 33"
Step 2: Check for more Called-to~Calling functions
since FN(30) = “main” then no more calling
functions and break.
Step 3: Add scope of influence
Slice[1] = Add_Scope_of_Influence(S[0])
Let F°'=S_=S[0]

F'=19, 10; 11, 12, 14, 16, 17, 18, 20,
23. 24, 28, 98,30, 31, 33)

s®=(9, 10, 11, 12, 14, 16, 17, 18, 20,
23, 24, 28, 29, 30, 31, 33},

F'=1{(1, 8, 5, 6, 21,25, 34},

s'={1, 3,5, 6,9,10, 11, 12, 14, 16,
17, 18, 20, 21, 23, 24, 25, 28, 29,
30, 31, 33, 34},

F={28];

s*=(1, 3, 5, 6, 9, 10, 11, 12, 14, 16,
17, 18, 20, 21, 23, 24, 25, 26, 28,
29, 30, 31, 33, 34},

F'= {1,

s*=(1, 3,5, 6, 9, 10, 11, 12, 14, 186,
17, 18, 20, 21, 23, 24, 25, 26, 28,
29, 30, 31, 33, 34},
Slice[1] = §* ={1, 3, 5,6,9, 10, 11, 12, 14,
16,17, 18, 20, 21,23, 24,25, 286,
28, 29, 30, 31, 33, 34].

And finally, the dynamic slice is shown in Figure 15.

Example 2. Consider trajectory T in Figure 9.
Using the criterion C = (x, 32%, {Sum}), we have

x = (Max,Num) = (3, (10.0, 20.0, 15.0, 5.0)).

The step-by-step trace of the algorithm in Figure 5
follows.
Step 1:
S[0] =S [0] v
Compute_Slice_in_Function_Name(C)
Step 1.1:
FN(C.q) = FN (20) = “main”
// therefore compute slice in function “main”
compute TF // as shown in Figure 9

compute LDF /7 as shown in Figure 10

compute DUF /7 as shown in Figure 10

SASIAINSSUANIAS Ssuvaa 63

compute TCme // as shown in Figure 10
compute IRFmin // as shown in Figure 10
compute LDRan// as shown in Figure 10
Step 1.2:
Compute S = ComputeSlice(DUijn,TCijn,
IRFMH,LDRFMH,C)
Since C = (x, 32%°, {Sum}) // given
LD(20, {Avg)) = {}, LT(32%) = {28'}), I' =
32%

A’= (28", 327}, S"= (28" 32%),

Al= (31", st'= (a8, 31, 16, 327,

A= [20%,30%), S*= (28' 20° 30° 31%%,
329,

A=, s’ = (28!, 29, 30°, 31,
32",

S =8’ = {28, 29°, 30°, 31", 32%).
Step 1.3: Check Calling-to-Called functions
Yes, since {9*) IE {31'%), and (16"} IE
(32%),
FN(4) = “Compute”, and FN(13) = “Sum”,
s Sc o T'me v TFSM,
T ™ 9%,.10°, 11°; 127, 12°, 12%
127, 14*'s,
TF, = <16%,17*, 18", 18%, 18", 18%,
20%>,
g={28229ﬂ3019i10211&12212%
12% 12%°, 14™, 317, 16, 17™, 18",
18, 18", 18", 20", az™|,
Finally, we get S[0] = S[0] w S:
= {28, 29 30° 9% 10° 11°, 127, 12,
127 B2 14 s vt 1eh
18, 18", 18, 20%, 32%).
Step 2: Check for more Called-to-Calling functions
since FN(20) = “main™ then no more calling

function and break

Step 3: Add scope of influence
Slice[1] = Add_Scope_of_Influence(S[0])
LmFESD=ﬁm
F= (8.10] 11,719, 14, 16,17, 18, 20,
28, 29, 30, 31, 32|
§° ={9,10, 11, 12, 14, 16,17, 18, 20,
28, 29, 30, 31, 32},
F'= {1, 3, 5, 6, 21, 34},
St = {18, 5.6,9,10,71,19,14,16, 17,
18, 20, 21, 28, 29, 30, 31, 32, 34/,
F’= {26},
s$?=1{1, 3, 5, 6,9, 10, 11, 12, 14, 16,
17, 18, 20, 21, 26, 28, 29, 30, 31,
32, 34},
F'= (1,
S® =(1,3,5; 6,9,10, 11, 12, 14, 186,
17, 18, 20, 21, 26, 28, 29, 30, 31,
32, 34},
Slice[1] = §* = (1,3, 5, 6,9, 10, 11, 12, 14,
16,17, 18, 20, 21, 26, 28, 29,
30, 31, 32, 34].

1: #include <iostrean>
3: class Compute {

4 private:

3 mt Max,

6 float Num[4];

8 public

9 Computelint M, float *N) {

10 Max =M

35 cont<<"allocate mem"<<endl;

12 for(im [=0; l<Max; ++1)
Num({I] = N[I};

14

¥
16 Noat Sum{void) {
17 Moat Tsum = (),
18 for(int [=0; 1<Max; ++1}
Tsum = Tsum + Num[1];
20 return Tsum,

:)
23 [loat Avglvod) {
24 returm Sumf}(Max + 1)

29: int Max=4;
30 float Numl[4] = {100, 20.0, 150, 5.0);
31: Compute A(Max, Num),

3% cout<<A Avp(l<<endl;

34)

Fig. 15 A dynamic program slice computed based on vanabl.
Avg inline 33 of the program in Figure 8

64 H1SAISIAINSSUANEAS SIBUVAA

1: #include <iostreams

3: class Compute {

4 private;

5 int Max;

6 float Num[4]:

8 public:

9 Compute(int M, Noat *Nj {

10 Max = M;

1k cout<<"allocate mem™<<endl.

12 for(int 1=0; [<Max; ++0)
Numf{l] = N[1]

}
16 float Sumi(vond) {
17 float Tsum = 0,
18 for(int 1=0); I<Max; ++1)
Tsum = Tsum + Num{l]
20 return Taum,
21: }
o8
28 mamn () {
29wt Max =4
30. float Numl[4] = {10.0, 200, 150, 50}
31 Compute A(Max, Num};
32 coute<A Sumi)<<endl;
343
Fig. 16 A dynamic program slice computed based on variable
Sumin line 32 of the program in Figure B

33 foat Ava(void) {
24 return Sum()i{Max + 1);
3% 3}
Fig. 17 The final program segment after slicing and dicing

And finally, the dynamic slice is shown in Figure

16.

5. Dicing Procedures

Dicing [6][7][8] is the process of identifying
a set of statements likely to contain an error. A dice
is determined as follows:

1. Compute the slice (Si) for the incorrectly
valued output variable(s), which is a subset
of KBI (known to be incorrect).

2. Compute the slice (Sc) for the correctly
valued output variables(s), which is a
subset of CSF (correct so far).

3. Compute (Si - Sc), which makes up the

dice.

Example 3. Observe that a dynamic program slice
in Example 1 is a subset of KBI, while a dynamic
program slice in Example 2 is a subset of CSF.
Consequently, using the definition of dicing, a dice
program can be shown as follows

Once the procedure is finished, line 24 will be shown

as the incorrect line.

6. Conclusions

In this paper, we presented the definitions,
the algorithms, and the approaches used to compute
a program slice and a program segment after dicing.
Some examples were shown as well.

In this work, a number of definitions and
algorithms originally introduced by Korel and Laski
[5] were modified in order to compute slices in
classes, objects, arrays, pointers, references,
dynamic allocation operators, function overloading,
copy constructors, default arguments, operator
overloading, inheritance, virtual functions,
polymorphism, templates, and exception handling
of a C++ program. These definitions and algorithms
were used to implement a tool named C++Debug.

C++Debug was designed to allow ease and
convenience on the part of the user. Using
C++Debug, a user can interact directly with the
computer in locating errors in a program. For
convenience, the program provides menus to allow
the user to select any one of the functions contained
therein. Based on the results of the experimentation,
C++Debug could generate a new slicing program
that is of smaller size than the original source
program. The new slicing program still preserves
part of the program’s original behavior for a specific
input. In addition, C++Debug can be used as a tool
like ctrace under UNIX [14]. C++Debug can work
on both C and C++.

7. References

[1] Keith Brian Gallagher, Using Program Slicing
in Software Maintenance, Ph.D. Dissertation,
Computer Science Department, University of
Maryland, Baltimore County, MD, 1990.

[2] Keith Brian Gallagher and James R. Lyle,
“Using Program Slicing in Software
Maintenance,” IEEE Transactions on Software
Engineering, Vol. 17, No. 8, pp. 7561-761,
August 1991,

NSA1SIAINSSUANARS SUoAa BS

[3]

[4]

[5]

(6]

(7]

(8]

Bogdaﬁ Korel, “PELAS-Program Error-
Locating Assistant System,” IEEE Transactions
on Software Engineering, Vol. 14, No. 9, pp.
1253-1260, September 1988.

Bogdan Korel and Janusz Laski, “Dynamic
Program Slicing,” Information Processing
Letters, Vol. 29, No. 3, pp- 1556-163,
October 1988.

Bogdan Korel and Janusz Laski, “Dynamic
Slicing of Computer Programs,” Journal of
Systems and Software, Vol. 13, No. 3, pp.
187-195, November 1990.

James R. Lyle, Evaluating Variations on
Program Slicing for Debugging, Ph.D.
Dissertation, Computer Science Department,
University of Maryland, College Park, MD,
1984.

Sekaran Nanja, An Interactive Debugging Tool
for C Based on Program Slicing and Dicing,
Master of Science Thesis, Computer Science
Department, Oklahoma State University,
Stillwater, OK, May 1990.

Sekaran Nanja and Mansur H. Samadzadeh,
“A Slicing/Dicing-Based Debugger for C,”
The 8" Annual Pacific Northeast Software
Quality Conference, Portland, OR, pp. 204~
212, October 1990.

9]

[10]

[11]

(12]

(13]

[14]

Mansur H. Samadzadeh and Winai
Wichaipanitch, “An Interactive Debugging
tool for C based on Dynamic Slicing”,
Proceedings of the 1993 ACM Computer
Science Conference, Indianapolis, IN, pp. 30—
37, February 1993.

Mark Weiser, “Program Slicing, ” Proceedings
of the Fifth International Conference on
Software Engineering, San Diego, CA, pp.
439-449, March 1981.

Mark Weiser, “Programmers Use Slices When
Debugging,” Communications of the ACM,
Vol. 25, No. 7, pp. 446-452, July 1982.
Mark Weiser, “Program Slicing,” IEEE
Transactions on Software Engineering, Vol.
SE-10, No. 4, pp. 352-357, July 1984.
Mark Weiser and James R. Lyle, “Experiments
on Slicing-Based Debugging Aids,” a paper
presented at The First Workshop on Empirical
Studies of Programmers, (Soloway, E. and
Iyengar, S., Editors), Ablex Publishing
Corporation, Norwood, NJ, pp. 187-197,
1986.

“UNIX IN A NUTSHELL," http:/ www.oreilly.
com/ catalog/unixcd/chapter/c02_043.htm,
Last Update: November 1998, Last Access:
May 19, 2003.

