On the Diophantine Equation $p^x + p^y = z^2$

Mongkol Tatong and Alongkot Suvarnamani Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi, Pathum Thani, 12110, Thailand. E-mail: kotmaster2@rmutt.ac.th

Abstract

In this paper, we study the diophantine equation $p^x + p^y = z^2$ where p is a prime number and x, y and z are non-negative integers.

2010 Mathematics Subject Classification: 11D61.

Key words and phrases: diophantine equations, exponential equations, Catalan's conjecture

1 Introduction

In 2007 Acu [1] studied the diophantine equation of form $2^x + 5^y = z^2$. He found that this equation has exactly two solutions in non-negative integer $(x, y, z) \in \{(3, 0, 3), (2, 1, 3)\}$. After that Suvarnamani, Singta and Chotchaisthit [7] found solutions of two diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$. Then Suvarnamani [6] studied the diophantine equation of form $2^x + p^y = z^2$ where p is a prime number and x, y and z are non-negative integers.

Now, we study the diophantine equation $p^x + p^y = z^2$ where p is prime number and x, y and z are non-negative integers.

2 Main Results

In this study, we use Catalan's conjecture (see [4]). It is proved there that the only solution in integers a > 1, b > 1, x > 1 and y > 1 of the equation $a^x + b^y = 1$ is a = y = 3 and b = x = 2. From the diophantine equation

$$p^x + p^y = z^2 \tag{1},$$

we consider in 5 cases.

Case 1: x = 0. The diophantine equation (1) becomes $(z - 1)(z + 1) = p^y$. Then we have $p^u(p^{y-2u} - 1) = 2$, where $z - 1 = p^u$ and $z + 1 = p^{y-u}$, for y > 2u and u is a non-negative integer. Therefore, $p^u = 1$ or $p^u = 2$. If $p^u = 1$, then u = 0. It follows that the diophantine equation (1) has a solution if p = 3, i.e., x = 0, y = 1 and z = 2. If $p^u = 2$, then p = 2 and u = 1. It follows that the diophantine equation (1) has a solution , i.e., x = 0, y = 3 and z = 3.

Case 2: y = 0. The diophantine equation (1) becomes $(z - 1)(z + 1) = p^x$. Then we have $p^v(p^{x-2v} - 1) = 2$, where $z - 1 = p^v$ and $z + 1 = p^{y-v}$, for y > 2v and v is a non-negative integer. Therefore, $p^v = 1$ or $p^v = 2$. If $p^v = 1$, then v = 0. It follows that the diophantine equation (1) has a

If $p^v = 1$, then v = 0. It follows that the diophantine equation (1) has a solution if p = 3, i.e., x = 1, y = 0 and z = 2.

If $p^v = 2$, then p = 2 and v = 1. It follows that the diophantine equation (1) has a solution ,i.e., x = 3, y = 0 and z = 3.

Case 3: $x \ge 1$, $y \ge 1$ and x = y. We have $2p^x = z^2$. Then p = 2. We get $2^{x+1} = z^2$. It follows that $z = 2^k$ and x = 2k - 1 where $k \in N$.

Case 4: $x \ge 1$, $y \ge 1$ and x > y. We have $p^y(p^{x-y}+1) = z^2$. Then y = 2k and $p^{x-2k}+1 = w^2$ where k and w are positive integers such that $z = p^k w$. We get $p^{x-2k} = w^2 - 1$. Now, it is easy to see that the solution of the diophantine equation (1) is $(x, y, z) \in \{(2k + 1, 2k, 2 \cdot 3^k), k \in N\}$ for p = 3. And $(x, y, z) \in \{(2k + 3, 2k, 3 \cdot 2^k), k \in N\}$ is a solution of the diophantine equation (1) where p = 2.

Case 5: $x \ge 1$, $y \ge 1$ and x < y. We get the solution of the diophantine equation (1) is $(x, y, z) \in \{(2k, 2k + 1, 2 \cdot 3^k), k \in N\}$ for p = 3. And $(x, y, z) \in \{(2k, 2k + 3, 3 \cdot 2^k), k \in N\}$ is a solution of the diophantine equation (1) where p = 2. On the diophantine equation $p^x + p^y = z^2$

In conclusion, we have

Theorem 2.1. Consider the diophantine equation (1) where p is a prime number,

- (i) For p = 2, a solution of the diophantine equation (1) is $(x, y, z) \in \{(0, 3, 3), (3, 0, 3)\} \cup \{(2k 1, 2k 1, 2^k) | k \in N\} \cup \{(x, y, z) \in \{(2k + 3, 2k, 3 \cdot 2^k), k \in N\} \cup \{(x, y, z) \in \{(2k, 2k + 3, 3 \cdot 2^k), k \in N\}.$
- (ii) For p = 3, a solution of the diophantine equation (1) is $(x, y, z) \in (0, 1, 2), (1, 0, 2) \cup \{(x, y, z) \in \{(2k + 1, 2k, 2 \cdot 3^k), k \in N\} \cup \{(x, y, z) \in \{(2k, 2k + 1, 2 \cdot 3^k), k \in N\}.$

Acknowledgements

This research was partly supported by Faculty of Sciences and Technology, RMUTT, Thailand.

References

- [1] ACU, D., On a diophantine equation $2^x + 5^y = z^2$, General Mathematics, Vol. 15, No. 4, 145-148, 2007.
- [2] DAVID, M.B., *Elementary Number Theory*, 6th ed., McGraw-Hill, Singapore, 2007.
- [3] KENNETH, H.R., *Elementary Number Theory and its Application*, 4th ed., Addison Wesley Longman, Inc., 2000.
- [4] MIHAILESCU, P., Primary cyclotomic units and a proof of *Catalan's* conjecture, J. Reine Angew. Math., 167-195, 2004.
- [5] MORDELL, L.J., *Diophantine Equations*, Academic Press, New York, 1969.
- [6] SUVARNAMANI, A., Solutions of the diophantine equation $2^x + p^y = z^2$, International Journal of Mathematical Sciences Applications (IJMSA), Vol. 1, No.3, 1415-1419, 2011.
- [7] SUVARNAMANI, A., SINGTA, A. AND CHOTCHAISTHIT, S., On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Science and Technology RMUTT Journal, Vol. 1, No.1, 25-28, 2011.