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ABSTRACT

The purposes of this thesis are to (1) study the properties and characterizations of pseudo
principally quasi-injective modules and pseudo quasi-principally injective modules, (2) study the
properties and characterizations of endomorphism rings of the two types of modules, (3) extend the
concepts of principally quasi-injective modules and quasi-principally injective modules and (4) find
some relations between among the four types of modules mentioned.

Let R be a ring. A right R-module M is called principally injective if every R-
homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from
R to M. A right R-module N is called principally M-injective if every R-homomorphism from a
principal submodule of M to N can be extended to an R-homomorphism from M to N. A right R-
module M is called principally quasi-injective if it is principally M-injective. A right R-module N is
called M-principally injective if every R-homomorphism from an M-cyclic submodule of M to N
can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-
principally injective if it is M-principally injective. The notion of principally quasi-injective
modules and quasi-principally injective modules are extended to be pseudo principally quasi-
injective modules and pseudo quasi-principally injective modules, respectively. A right R-module N
is called pseudo principally M-injective if every R-monomorphism from a principal submodule of M
to N can be extended to an R-homomorphism from M to N. A right R-module M is called pseudo
principally qausi-injective if it is pseudo principally M-injective. A right R-module N is called

pseudo M-principally injective if every R-monomorphism from an M-cyclic submodule of M to N

il



can be extended to an R-homomorphism from M to N. A right R-module M is called pseudo
qausi-principally injective if it is pseudo M-principally injective.

The results are as follows. (1) Let M be a principal and pseudo principally quasi-injective
module: (a) if M is weakly co-Hopfian, then M is co-Hopfian; (b) for a fully invariant essential
submodule X of M, if X is weakly co-Hopfian, then M is weakly co-Hopfian; (c) if X is a principal
and essential submodule of M and M is weakly co-Hopfian, then X is weakly co-Hopfian. (2) Let M
be a pseudo quasi-principally injective module and s, ¢ € S = End(M): (a) if s(M) embeds in #(M),
then Ss is an image of St; (b) if s(M) = #(M), then Ss = St. (3) Let M be a pseudo quasi-principally
injective module and S = End(M): (a) if S/W(S) is regular, then J(S) = W(S); (b) if SLA(S) is regular,
then S/W(S) is regular if and only if J(S) = W(S); (c) if Im(s) =® M where s € S, then any
R-monomorphism ¢ : s(M) — M can be extended to an R-monomorphism in S. (4) For a pseudo
quasi-principally injective module M, if S is semiregular, then for every s € S\J(S), there exists

a nonzero idempotent ¢ € Ss such that Ker(s) < Ker(a) and Ker(s(1—a)) # 0.

Keywords: pseudo principally quasi-injective modules, principally quasi-injective modules,

endomorphism rings
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CHAPTER 1

INTRODUCTION

In modules and rings theory research field, there are three methods for doing the research.
Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings.
Secondly, to study about the modules over special rings. Thirdly, to study about ring R by way of

the categories of R-modules. Many mathematicians have concentrated on these methods.

1.1 Background and Statement of the Problems

Many generalizations of the injectivity were obtained, e.g., principally injectivity. In [2],
V. Camillo introduced the definition of principally injective modules by calling a right R-module M
is principally injective if every R-homomorphism from a principal right ideal of R to M can be
extended to an R-homomorphism from R to M.

In [10], W. K. Nicholson and M. F. Yousif studied to the structure of principally injective
rings. They gave some applications of these rings and modules. A ring R is called right principally
injective if every R-homomorphism from a principal right ideal of R to R can be extended to an R-
homomorphism from R to R.

In [11], W. K. Nicholson, J. K. Park and M. F. Yousif introduced the definition of
principally quasi injective modules by calling a right R-module M is principally quasi-injective if
every R-homomorphism from a principal submodule of M to M can be extended to an R-
endomorphism of M.

In [12], N. V. Sanh, K. P. Shum, S. Dhompomgsa and S. Wongwai introduced the
definitions of quasi principally injective modules. A right R-module M is quasi-principally injective
if every R-homomorphism from an M-Cyclic submodule of M to M can be extended to M.

In [19], Z. Zhanmin introduced the definitions of pseudo principally quasi injective
modules. A right R-module M is pseudo principally quasi-injective if every R-monomorphism from

a principal submodule of M to M can be extended to M.



1.2 Purpose of the Study

In this thesis, we have the purposes of study which are to extend concept of the previous
works and to generalize new concepts which are :

1.2.1 To extend the concept of principally injective modules.

1.2.2 To generalize the concept of principally quasi injective modules and quasi
principally injective modules.

1.2.3 To establish and extend some new concepts which is pseudo principally quasi-

injective modules [19].

1.3 Research Questions and Hypothesis

We are interested in seeing to extend the characterizations and properties which remain
valid from these previous concepts which can be extended from principally injective modules [2],
principally-injective rings [10], principally quasi-injective modules [11], quasi-principally injective
modules [12], and pseudo principally quasi-injective modules [19].

In this research, we introduce the definition of pseudo principally quasi-injective modules
and pseudo quasi-principally injective modules and give characterizations and properties of these
modules which are extended from the previous works. By let M be a right R-module. A right R-
module N is called pseudo principally M-injective if every R-monomorphism from a principal
submodule of M to N can be extended to an R-homomorphism from M to N. Dually, a right R-
module M is called pseudo principally quasi-injective if it is pseudo principally M-injective. And a
right R-module N is called pseudo M-principally injective if every R-monomorphism from an M-
cyclic submodule of M to N can be extended to an R-homomorphism from M to N. Dually, a right
R-module M is called pseudo quasi-principally injective if it is pseudo M-principally injective.
Many of results in this research are extended from principally-injective rings [10], principally
quasi-injective modules [11], quasi-principally injective modules [12], endomorphism ring of semi-

injective module [16], and pseudo principally quasi-injective modules [19].



1.4 Theoretical Perspective

In this thesis, we use many of the fundamental theories which are concerned to the rings
and modules research. By the concerned theories are :

1.4.1 The fundamental of algebra theories.

1.4.2 The basic properties of rings and modules theory.

1.5 Delimitations and Limitations of the Study

For this thesis, we have the scopes and the limitations of studying which are concerned to
the previous works which are:

1.5.1 To extend the concept of principally quasi injective modules and quasi principally
injective modules.

1.5.2 To extend the concept of pseudo principally quasi-injective modules and pseudo
quasi-principally injective modules.

1.5.3 To characterize the concept in 1.5.2 and find some new properties.

1.6 Significance of the Study
The advantage of education and studying in this research, we can improve and develop

the concepts and knowledge in the algebra and modules research field.



CHAPTER 2

LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the modules

and rings theory which are used in this thesis.

2.1 Rings, Modules, Submodules and Endomorphism Rings
This section is assembled summary of various notations, terminology and some

background theories which are concerned and used for this thesis.

2.1.1 Definition. [15] By a ring we mean a nonempty set R with two binary operations

+and -, called addition and multiplication (also called product), respectively, such that

(1) (R,+)is an additive abelian group.

(2) (R,-)is a multiplicative semigroup.

(3) Multiplication is distributive (on both sides) over addition; that is, for all
a, b, c € R, a(b+c) = asb+a-c and (a+b)+c = ac+b-c.

The two distributive laws are respectively called the left distributive law and the
right distributive law.

A commutative ring is a ring R in which multiplication is commutative; i.e. if
ab=bea forall a, b € R.If aring is not commutative it is called noncommutative.

A ring with unity is a ring R in which the multiplicative semigroup (R, *) has an
identity element; that is, there exists e € R such that ea = a = ae for all a € R. The element e is
called unity or the identity element of R. Generally, the unity or identity element is denoted by 1.

In this thesis, R will be an associative ring with identity.

2.1.2 Definition. [15] A nonempty subset 7 of aring R is called an ideal of R if
(1) a,b e Iimpliesa—b € I.

(2) aelandr e Rimplyar € Iand ra € .



2.1.3 Definition. [14] A subgroup 7 of (R, +) is called a left ideal of R if Rl C |, and

aright ideal if IR C I

2.1.4 Definition. [15] A right ideal I of a ring R is called principal if I = aR for some

a € R.

2.1.5 Definition. [15] Let R be a ring, M an additive abelian group and (m, r)— mr,
a mapping of M X R into M such that

(1) mreM
2) (m1+ mz)r: mr+myr
(3) m(r\+r)) =mr+mr,

4) (mr)r, =m(rr,))

B5) ml=m

forall v, »,,r, € R and m, m

Ty s Ty m, € M. Then M is called a right R-module, often written as M I

1 2
Often mr is called the scalar multiplication or just multiplication of m by r on

right. We define left R-module similarly.

2.1.6 Definition. [14] Let M be a right R-module. A subgroup N of (M, +) is called a
submodule of M if N is closed under multiplication with elements in R, that is nr € N for all n € N,
r € R. Then N is also a right R-module by the operations induced from M :

NXR— N, (n,r)—>nr,foralln € N,r € R.

2.1.7 Proposition. 4 subset N of an R-module M is a submodule of M if and only if
() o0eN.

(2) n,, n, € Nimplies n,— n, € N.

1

(3) n € N, r € R implies nr € N.

Proof. See[16, Lemma 5.3]. ]



2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of M. Then the
set of cosets
MIK={x+K|xeM}
is a right R-module relative to the addition and scalar multiplication defined via

(x+K)+(y+K)=(x+p)+K and (x+K)r=xr+Kk.

The additive identity and inverses are given by

K=0+K and -(x+K)=-x+K.

The module M/K is called (the right R-factor module of ) M modulo K or

the factor module of M by K.

2.1.9 Definition. [14] Let M and N be right R-modules. A function f': M — N is called

an ( R-module ) homomorphism if for all m, m, m, € Mand r € R

15
SCmyr+my) =f(m)r+f(m,).
Equivalently, f(m, +m,)=f(m,)+f(m,) and f(mr)=f(m)r.
The set of R-homomorphisms of M in N is denoted by Hom (M, N ). In particular,

with this addition and the composition of mappings, Hom(M,M) = End (M) becomes a ring,

called the endomorphism ring of M and f € End (M) is called an R-endomorphism. [14, 6.4]

2.1.10 Definition. [1] Let f: M — N be an R-homomorphism. Then
(1) fis called R-monomorphism (or R-monic) if fis injective (one-to-one).
(2) fis called R-epimorphism (or R-epic) if fis surjective (onto).

(3) fis called R-isomorphism if f'is bijective (one-to-one and onto).

Two modules M and N are said to be R-isomorphic, abbreviated M = N in case

there is an R-isomorphism f: M — N.

2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping 77, : M — M/K

from M onto the factor module M/K defined by



Ne(x)=x+KeMK (xeM)

is seen to be an R-epimorphism with kernel K. We call 7], the natural epimorphism of M onto MIK.

2.1.12 Definition. [1] Let A C B. Then the function 7 = ! ,—p: A — B defined by

1=, ,) :a—aforalla € 4is called the inclusion map of A in B. Note that if 4 C Band 4 C C,

B| A4

andif B#C, thent, _ ,#1 Of course 1, =1,

A<C” A

2.1.13 Definition. [15] Let M and N be right R-modules and let /' : M — N be an
R-homomorphism. Then the set
Ker(f) = { xXeEM ‘f(x) =0 } is called the kernel of
and
f(M) = {f(x) EN ‘ XEM } is called the homomorphic image (or simply image)
of M under fand is denoted by Im( f).

2.1.14 Proposition. Let M and N be right R-modules and let f : M — N be an
R-homomorphism. Then
(1) Ker(f) is a submodule of M.
) Im(f)=f(M) is a submodule of N.

Proof. See[14, 6.5]. 0

2.1.15 Proposition. Let M and N be right R-modules and let f: M — N be an

R-isomorphism. Then the inverse mapping f N> Misan R-isomorphism.

Proof. See [15, Chapter 14, 3]. 0

2.1.16 Definition. [20] A submodule K of the module M is fully invariant in M if

f(K) c K for every endomorphism f of M.



2.2 Essential and Superfluous Submodules
In this section, we give the definitions of essential and superfluous submodules and some

theories which are used in this thesis.

2.2.1 Definition. [14] A submodule K of M is called essential (or large) in M,

abbreviated K C€ M, if for every submodule L of M, K N L =0 implies L = 0.

2.2.2 Definition. [14] A submodule K of M is called superfluous (or small) in M,

abbreviated K < M, if for every submodule L of M, K + L = M implies L = M.

2.2.3 Proposition. Let M be a right R-module with submodules K C N C M and

HC M. Then
(1) KC¢ M ifand only if K C°Nand NC€ M.
(2) KNH C®M ifand only if K€M and H C€ M.
Proof. See [1, Proposition 5.16]. [

2.2.4 Proposition. A submodule K C M is essential in M if and only if for each 0 # x €
M there exists an r € R such that 0 £Zxr € K.

Proof. See [1, Proposition 5.19]. 0

2.2.5 Definition. [7] Let R be a ring and M is a right R-module. M is co-Hopfian if any
injective endomorphism of M is an isomorphism. A right R-module M is weakly co-Hopfian if any

injective endomorphism f of M is essential; that is, f(M)c® M .

2.2.6 Definition. [1] A nonzero module M is uniform if every non-zero submodule of M

is essential in M.

2.3 Annihilators and Singular Modules
In this section, we give the definitions of annihilators, singular modules and some

theories which are used in this thesis.



2.3.1 Definition. [1] Let M be a right (resp. left) R-module. For each X C M, the right

(resp. left) annihilator of X in R is defined by
rR(X)= { rER‘xr=O, VxeX} (resp. ZR(X)= { r€R|rx=0,Vx€X}).

For a singleton {x} , we usually abbreviated to r,(x) (resp. [,(x)).

2.3.2 Proposition. Let M be a right R-module, let X and Y be subsets of M and let A

and B be subsets of R. Then
(1) r(X) is a right ideal of R.
2) X C Y imples rR(Y) C rR(X).
(3) A C B imples lM(B) C IM(A ).

4 X C l,r(X) and A Cryl, (A4).

Proof. See [1, Proposition 2.14 and Proposition 2.15]. 0

2.3.3 Proposition. Let M and N be right R-modules and let f : M — N be a
homomorphism. If N'is an essential submodule of N, then f _I(N ") is an essential submodule of M.

Proof. See [4, Lemma 5.8(a)]. O

2.3.4 Proposition. Let M be a right R-module over an arbitrary ring R, the set
2AM)= { e M' rp(x) is essential in R, }
is a submodule of M.

Proof. See [4, Lemma 5.9]. ]

2.3.5 Definition. [4] The submodule Z(M) = { xXEeEM | rR(x) is essential in R }
is called the singular submodule of M. The module M is called a singular module if Z(M) = M.

The module M is called a nonsingular module if Z(M) = 0.

2.4 Maximal and Minimal Submodules
In this section, we give the definitions and some properties of maximal submodules,

minimal (or simple) submodules and some theories which are used in this thesis.



10

2.4.1 Definition. [14] A right R-module M is called simple if M # 0 and M has no

submodules except 0 and M.

2.4.2 Definition. [14] A submodule K of M is called maximal submodule of M if
K # M and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if,

K# M and for every 4 C M, K C A implies K = 4.

2.4.3 Definition. [14] A submodule N of M is called minimal (or simple) submodule
of M if N# 0 and it has no non zero proper submodules of M, i.e. N is minimal (or simple) in M

if N# 0 and for every nonzero submodules 4 of M, 4 C N implies 4 = N.

2.4.4 Proposition. Let M and N be right R-modules. If f - M — N is an epimorphism
with Ker( f) = K, then there is a unique isomorphism O : M/K — N such that O (m+K) = f(m)
forallm eM.

Proof. See [1, Corollary 3.7]. 0

2.4.5 Proposition. Let K be a submodule of M. A factor module M/K is simple if and
only if K is a maximal submodule of M.

Proof. See [1, Corollary 2.10]. 0

2.5 Injective and Projective Modules
In this section, we give the definitions of the injective modules and some theories which

are used in this thesis.

2.5.1 Definition. [1] Let M be a right R-module. A right R-module U is called injective
relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism
@ : K — U can be extended to a homomorphism & : M — U.

A right R-module U is said to be injective if it is M-injective for every right

R-module M.
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2.5.2 Proposition. The following statements about a right R-module U are equivalent :
(1) Uis injective;
(2) Uis injective relative to R;
(3) For every right ideal I C R, and every homomorphism h : I — U there exists

an x € U such that h is left multiplicative by x
h(a) =xaforalla € L

Proof. See [1, 18.3, Baer’s Criterion]. ]

2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called projective
relative to M (or U is M-projective) if for every N, every epimorphism g : M,— N, for every

homomorphism }: Up,— N, can be lifted to an R-homomorphism ]; U— M.

A right R-module U is said to be projective if it is projective for every right

R-module M.

2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an injective
right (resp. left) R-module.

Proof. See [1, Proposition 18.6]. 0

2.6 Direct Summands and Product of Modules

Given two modules M, and M, we can construct their Cartesian product M, X M,.
The structure of this product module is then determined ‘“co-ordinatewise” from the factors
M, x M,. For this section we give the definitions of direct summand, the projection and the

injection maps, product of modules and some theories which are used in this thesis.

2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called a direct
summand of M if there is a submodule Y of M such that X N Y =0 and X + Y = M. We write

M=X® Y, such that Y is also a direct summand.
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2.6.2 Definition. [1] Let M, and M, be R-modules. Then with their products module
M, x M, are associated the natural injections and projections
(D].:Mj—>M1><M2 and 7Zj:M1><M2—>Mj

(j=1,2), are defined by

@,(x)) = (x, 0), P,(x,) = (0, x,)
and
ﬂl(xl,xz) =X 7Z'2(x1,x2) =X,
Moreover, we have
7Z'1¢1 :lMl and 72-2¢2:1M2'

2.6.3 Definition. [1] Let 4 be a direct summand of M with complementary direct

summand B, so M =A4 @ B. Then
T, :a+ba (a€eAd,beB)

defines an epimorphism 77, : M — A is called the projection of M on A along B.

2.6.4 Definition. [14] Let {Ai ,i €1 } be a family of objects in the category C.

An object P in C with morphisms { T:P—A } is called the product of the family {Al., iel }
if :

For every family of morphisms { fii X — 4, } in the category C, there is a
unique morphism f: X — P with 7Z'lf=fl forallie L

For the object P, we usually write il;[IAi 11 7 4; or HAZ. . If all 4, are equal to
A, then we put HIAi =4

The morphism 77, are called the i-projections of the product. The definition can be

described by the following commutative diagram :
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T
M4 ——> 4

N

2.6.5 Definition. [14] Let { M. iel } be a family of R-modules and ( HMl. , T, ) the
i€l

product of the MZ. .Form,n € HMl. , 7 € R, using
iel

TT(m+n)=7 (m)+ 7 (n) and 7(mr)= 77 (M),

a right R-module structure is defined on [Tam ; such that the 77, are homomorphisms. With this
iel

structure ( HM a4 ) is the product of the { Mi i€l } in R-module.
iel
2.6.6 Proposition. Properties:

I {fl N> M. i€l } is a family of morphisms, then we get the map

f:N— HMl. such that ne (fl.(n))l. ey

i€l

and Ker(f) = aner(fl.)sincef(n) = 0 if and only lffl(}’l) =0foralliel

(2) For everyj € I, we have a canonical embedding

é}.:M.—) HMl., such that mj|—>(mj5.

AN jl)iepijMj’

with ET = Ly sie T is a retraction and & a coretraction.
J

This construction can be extended to larger subsets of I : For a subset A C [

we_form the product [Tm ; and a family of homomorphisms
i€d
77]'. for j €A,

£ M. — M., 1=
I iea ! 4 J 0 forjel—A.

Then there is a unique homomorphism
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77Jff0rj €A,
g [Im. — [Im. with &7 =
4 iea ! ier ' 477 0 forjel—A.

The universal property of 1M ; yields a homomorphism
ied

;e [Im, — Ty, with 7 7= 7 for jel
iel i€A ’

Together this implies &, T, 0= &,70.= 7Z}f0r allj € I, and by the properties of the product HMZ. ,
i€d

weget€A7Z'A=1MA.

Proof. See [14, 9.3, Properties (1), (2)] 0

2.7 Split Homomorphisms
Throughout this thesis, all rings R are associative with identity and all modules are
unitary right R-modules. A submodule X of M is called a direct summand of M if there is a

submodule Y of M such that X N Y=0and X+ Y= M. We will write M =X @ Y.

271 Lemma. Let f: M — N and g : N — M be homomorphisms such that
fg =1, . Then fis an epimorphism, g is a monomorphism and M = Ker(/) @ Im(g).

Proof. See[l, Lemma 5.1]. U

If f: M— N and g: N— M be homomorphisms such that fg =1 , then we say that

[is a split epimorphism (or splits), and we write

f
M—®—> N—— 0;

and we say that g is a split monomorphism (or splits), and we write

9
0—— N—D@ - M;

A short exact sequence
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is split (or splits) if f'is a split monomorphism and g is a split epimorplism.

2.7.2 Proposition The following statements about a short exact sequence

0 >M, NG Y >M, >0 in M are equivalent :

(1) The sequence is splits;

(2) The monomorphism f: M, — M is split;

(3) The epimorphism g : M — M, is split;

(4) Im f= Ker g is a direct summand of M,

(5) Every homomorphism h: M|, — N factors through f;
(6) Every homomorphism h : N — M, factors though g.

Proof. See [1, Propostion 5.2]. []

2.8 Generated and Cogenerated Classes
In this section, we give some definitions and theories of the generated and cogenerated

classes which are concerned in this thesis.

2.8.1 Definition. [14] A subset X of a right R-module M is called a generating set of M
if XR =M. We also say that X generates M or M is generated by X. If there is a finite generating set

in M, then M is called finitely generated.

2.8.2 Definition. [1] Let U be a class of right R-modules. A module M is ( finitely)
generated by U (or U ( finitely) generates M ) if there exists an epimorphism
i66_>1 Ui—=M
for some (finite) set / and UZ. e Uforeveryie L

IfU = {U } is a singleton, then we say that M is (finitely) generated by U
or (finitely) U-generates, this means that there exists an epimorphism

v —m

for some (finite) set 1.
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2.8.3 Proposition. If'a module M has a generating set L. C M, then there exists an
epimorphism
R —m
Moreover, M is finitely R-generated if and only if M is finitely generated.

Proof. See[1, Theorem 8.1]. ]

2.8.4 Definition. [18] Let M be a right R-module. A submodule N of M is said to be

an M-cyclic submodule of M if it is the image of an endomorphism of M.

2.8.5 Definition. [1] Let U be a class of right R-modules. A module M is ( finitely)
cogenerated by U (or U ( finitely) cogenerates M) if there exists a monomorphism

M— HUi
iel

for some (finite) set / and U e U for every i € I.
IfU= {U } is a singleton, then we say that a module M is ( finitely) cogenerated by U
or (finitely) U-cogenerates; this means that there exists a monomorphism

M—U!

for some (finite) set 1.

2.9 The Trace and Reject
In this section, we give some definitions and theories of the trace and reject which are

concerned in this thesis.

2.9.1 Definition. [1] Let U be a class of right R-modules. The trace of U in M and the

reject of U in M are defined by

TrM(U)=Z{ Im(h) | h:U— M forsome Ue U }
and

RejM(U)=n{Ker(h) | h:M— U forsome U e U }
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IfU= {U } is a singleton, then the trace of U in M and the reject of U in M are in the form
Tr,, (U) = 2{ Im(h) | h € Hom (U, M) }
and

Rej,, (U) = ﬂ{ Ker(h) | h € Homy(M, U) }

2.9.2 Proposition. Let U be a class of right R-modules and let M be a right R-module.
Then

(1) Tr,,(U) is the unique largest submodule L of M generated by U;
(2) Rej,,(U) is the unique smallest submodule K of M such that MIK is

cogenerated by U.

Proof. See [1, Proposition 8.12]. 0

2.10 Socle and Radical of Modules
In this section, we give some definitions and theories of the socle and radical of modules

which are used in this thesis.

2.10.1 Definition. [14] Let M be a right R-module. The socle of M, Soc(M), we denote

the sum of all simple submodules of M. If there are no simple submodules in M we put Soc(M) = 0.

2.10.2 Definition. [14] Let M be a right R-module. The radical of M, Rad(M), we
denote the intersection of all maximal submodules of M. If M has no maximal submodules we set

Rad(M) =M.

2.10.3 Proposition. Let & be the class of simple R-modules and let M be an R-module.

Then

Soc(M) = Tr,, (&)

ﬂ{LCM ‘ LisessentialinM}.

Proof. See[14,21.1]. 0
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2.10.4 Proposition. Let £ be the class of simple R-modules and let M be an R-module.

Then
Rad(M) = Rej,, (&)

= Z{LCM | LissuperﬂuousinM}.

Proof. See [14,21.5]. ]

2.10.5 Proposition. Let M be a right R-module. A right R-module M is finitely
generated if and only if Rad(M ) < M and M/Rad(M) is finitely generated.

Proof. See[14, 21.6, (4)]. ]

2.10.6 Proposition. Let M be a right R-module. Then Soc(M) C€ M if and only if
every non-zero submodule of M contains a minimal submodule.

Proof. See [1, Corollary 9.10]. 0

2.10.7 Corollary. [7] Let My is weakly co-Hopfian and f'is an injective endomorphism
of M, then:
(1) NC¢M ifandonly if f(N) ¢ Mand f(N) C€M.
(2) Soc(N) = NF(N)= Nf (N), where N runs through the set of all essential

submodules of M.

2.11 The Radical of a Ring and Local Rings
In this section, we give some definitions and theories of the radical of a ring and local

rings which are used in this thesis.

2.11.1 Definition. [1] Let R be a ring. The radical Rad(R) of R, is an (two side) ideal

of R. This ideal of R is called the (Jacobson) radical of R, and we usually abbreviated by

J(R) = Rad(Ry).

2.11.2 Definition. [1] Let R be a ring. An element x € R is called right (left) quasi-

regular if 1 — x has a right (resp. left ) inverse in R.
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An element x € R is called quasi-regular if it is right and left quasi-regular.
A subset of R is said to be (right, left) quasi-regular if every element in it has

the corresponding property.

2.11.3 Proposition. Given a ring R for each of the following subsets of R is equal to the

radical J(R) of R.
(J,) The intersection of all maximal right (lefi) ideals of R;
(J,) The intersection of all right (left) primitive ideals of R;
(J3) { xX€E€R | rxs is quasi-regular for all v, s € R };
(J) { X€ER | rx is quasi-regular for all r € R };
(Js) { X E€R | xs is quasi-regular for all s € R };
(Jg) The union of all the quasi-regular right (left ) ideals of R;
(J,) The union of all the quasi-regular ideals of R;
(Jg) The unique largest superfluous right (left) ideals of R;

Moreover, ((J,), (J), (Jy), ( J) and ( J7) also describe the radical J(R) if “quasi-regular” is
replaced by “right quasi-regular” or by “left quasi-regular’.

Proof. See[1, Theorem 15.3]. 0

2.11.4 Proposition. Let R be a ring with radical J(R). Then for every right R-module M,
J(R)YM,, © Rad(M,).
If R is semisimple modulo its radical, then for every right R-module,
J(R)M,, = Rad(M,)
and M/J(R )M, is semisimple.

Proof. See [1, Corollary 15.18]. 0

2.11.5 Definition. A ring R is said to be local if the set of non-inverrtible elements of R

is closed under addition.
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2.11.6. Proposition. For a ring R the following statements are equivalent:
(1) Ris alocal ring;
(2) R has a unique maximal right ideal,
(3) J(R) is a maximal right ideal,
(4) The set of elements of R without right inverses is closed under addition;
(5) JR) ={ xeR|Rx=R };
(6) RIJ(R) is a division ring;
(7) JR) =1{ xeR | X is not invertible };
(8) If x e R, then either X or 1— X is invertible .

Proof. See [1, Proposition 15.15] U

2.12 Von Neumann Regular Rings
In this section, we give some definitions and theories of Von Neumann regular rings

which are used in this thesis.
2.12.1 Definition. A ring R is von Neumann regular if a € aRa foreach a€R.

2.12.2 Proposition. The following statements are equivalent for a ring R:
(1) R is von Neumann regular;
(2) Every principal right ideal is a direct summand,
(3) Every finitely generated right is a direct summand.

Proof. See [3,3.10].

2.12.3 Proposition. Let M be a right R-module and S = End(M,). Then the following
statements are equivalent:
(1) S'is von Neumann regular;
(2) Im(f) and Ker(f) are direct summand of M for every f € S.

Proof. See [14, 37.7]. 0



CHAPTER 3

RESEARCH RESULT

In this chapter, we present the results of pseudo principally quasi-injective modules and

pseudo quasi-principally injective modules.

3.1 Pseudo Principally Quasi-injective Modules

3.1.1 Definition. [19] Let M be a right R-module. A right R-module N is called pseudo
principally M-injective (briefly, PP-M-injective) if, every R-monomorphism from a principal
submodule of M to N can be extended to M. The module M is called pseudo principally quasi-

injective (briefly, PPQ-injective) if, it is pseudo principally M-injective.

n
3.1.2 Proposition. Let M and N, (i = 1,2,...,n) be right R-modules. If _(-DlNi is PP-M-
i=

injective, then N, is PP-M-injective for each i = 1,2,...,n.

Proof. Leti € {1, 2,..., n} . To show that N, is PP-M-injective. Let m € M and @ : mR — N, be an
R-monomorphism. Let 7, : .6:91 N; — N, be the i-th projection map and @, : N, — I(-z-)l N; be the
i-th injection map. Since @.@ is an R-monomorphism, there exists an R-homomorphism
QM- i(-zBlNi such that @1 = @.¢p where 1 : mR — M is the inclusion map. Then 72'1.(51 =T Q..
Then by Definition 2.6.2, 7,1 = ¢. Hence 7. ¢ is an extension of ¢. 0

3.1.3 Lemma. Let B be a principal submodule of M. If B is PP-M-injective, then it is a

direct summand of M.

Proof. Let B=mR, m € M and B is PP-M-injective. Let ¢ : mR — M be the inclusion map and

1.r : mR — mR be the identity map. Since mR is PP-M-injective, there exists an R-homomorphism

1
@ : M — mR such that @1 = 1 o . Then we see that the short exact sequence 0 - MR — M splits.
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Then by Proposition 2.7.2, mR = Im(z) is a direct summand of M. This shows that B is a direct

summand of M. []

3.1.4 Lemma. Let M be PPQ-injective. If A is a direct summand of M, then A is PP-M-

injective.

Proof. Let A be a direct summand of M. Let m € M and ¢ : mR — A be an R-monomorphism.
Let ¢ : A — M be the injection map. Then @« : mR — M is an R-monomorphism. Since
M is PPQ-injective, there exists an R-homomorphism ¢ : M — M such that g = a1 where
1 : mR — M is the inclusion map. Let 7 : M — A be the projection map. Then 7pa = zai.
Since by Proposition 2.6.6, 7¢p = 1,, a = 7ai . Therefore ¢ is an extension of a. This shows

that 4 is PP-M-injective. (]

A right R-module M is called co-Hopfian [7] if any injective endomorphism of M is an
isomorphism. A right R-module M is called weakly co-Hopfian if any injective endomorphism f

of M is essential; that is, fAM) <° M. A submodule N of M is called a fully invariant submodule of

M if s(N) < N for every s € S = End (M).

3.1.5 Proposition. Let M be a principal and PPQ-injective module.
(1) If M is weakly co-Hopfian, then M is co-Hopfian.
(2) For a fully invariant essential submodule X of M, if X is weakly co-Hopfian,
then M is weakly co-Hopfian.
(3) If X is a principal and essential submodule of M and M is weakly co-Hopfian,

then X is weakly co-Hopfian.

Proof. (1) Let M be a weakly co-Hopfian module. Let f: M — M be an R-monomorphim. Since
fis monic, fAM) = M. We must show that f{M) is PP-M-injective. Let m € M and « : mR — f(M) be
an R-monomorphism. Let o : AM) — M be the R-isomorphism. Since M is PPQ-injective, there
exists an R-homomorphism ¢ : M — M such that ca = a1 where 7 : M — M is the inclusion map.
Then o ‘oo = o'a1, so @ = o 1. Hence fIM) is PP-M-injective. Since f{M) is a principal

submodule of M, by Lemma 3.1.3, M = AM) D X for some submodule X of M. Thus AM)NX =0
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and M = f(M) + X. Since M is weakly co-Hopfian, fAM) c° M. Hence X = 0. Therefore M = fAM).
This shows that M is co-Hopfian.

(2) Let X be a fully invariant essential submodule of M and let X be weakly
co-Hopfian. To show that M is weakly co-Hopfian. Let f : M — M be an R-monomorphism.
Since X is fully invariant submodule of M, f|x : X — X is an endomorphism of X. It follows
that f|x : X — X is an R-monomorphism. We must show that (M) —® M. Since X is weakly
co-Hopfian, fAiX) <® X. Since X <*M, A X ) <® M. Since AX) = AM) < M and iX) = M, by
Proposition 2.2.3 we have (M) c® M. Therefore M is weakly co-Hopfian.

(3) Let X = mR, for some m € M, X be an essential submodule of M and let
M be weakly co-Hopfian. To show that X is weakly co-Hopfian. Let /' : X — X be an injective
endomorphism of X. Since M is a PPQ-injective, there exists an R-homomorphism g : M — M
such that 1f = gt where 1 : X — M is the inclusion map. Since X is an essential submodule of M
and Ker(g) N X = 0, so by Definition 2.2.1, Ker(g) = 0. Hence g is an R-monomorphism, so
2(X) <® M by Corollary 2.10.7. Since fX) = (X)) = gu(X) = g(X), AX) * M. Since fAX) € X = M,

by Proposition 2.2.3 we have AX) ® X. Therefore X is weakly co-Hopfian. tl

3.2 Pseudo Quasi-Principally injective Modules

3.2.1 Definition. Let M be a right R-module. A right R-module N is called pseudo
M-principally injective (briefly, PM-P-injective) if, every R-monomorphism from an M-cyclic
submodule of M to N can be extended to an endomorphism of M. The Module M is called pseudo

quasi-principally injective (briefly, PQ-P-injective) if it is PM-P-injective.

3.2.2 Theorem. Let M be a right R-module. Then M is PQ-P-injective if and only if

Ker(s) = Ker(t), s,t € S=End (M) implies Ss = St.

Proof. (=) Lets, ¢ € S with Ker(s) = Ker(t). Define @ : s(M) — M by ¢(s(m)) = t(m) for every
m e M. We must show that ¢ is the well-defined. Let s(m), s(m,) € s(M) such that s(m ) = s(m,).
Thus s(m,) — s(m,) = 0, so s(m,; — m,)) = 0. Then m, — m, € Ker(s) = Ker(?), so t(m; — m,) = 0.

Hence #(m,) = (m,), so go(s(ml)) = t(m,) = t(m,) = (D(S(m2)). Let s(m,), s(m,) € s(M) and r € R.
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Then go(s(ml)r + S(mz)) = (/)(S(mlr) + S(mz)) = (/)(S(mlr + mz)) = t((mlr + mz)) = tm,r) + t(m,) =
Hm)r + t(m,) = (D(S(ml))r + (0(S(m2)). This shows that ¢ is an R-homomorphism. Let s(m,), s(m,)
€ s(M) such that ¢(s(m,)) = @(s(m,)). Then #(m,) = #(m,), so t(m, — m,) = 0. Thus m; —m, €
Ker(f) = Ker(s), so s(m, —m,) = 0. Hence s(m,) — s(m,) = 0, so s(m,) = s(m,). This shows that ¢
is an R-monomorphism. Since M is pseudo quasi-principally injective and s(M) is an M-cyclic
submodule of M, there exists an R-homomorphism ¢@: M — M such that @ = @i where
t: s(M) — M is the inclusion map. Thus = @S = @iS = @S € Ss. Then St < Ss. Similarly,
Ss c St, therefore Ss = St.

(<) Lets e Sand a: s(M) — M be an R-monomorphism. Then Ker(@) = Ker(1).
where 7 : s(M) — M is the inclusion map. Then by assumption, S = Si. We have a € Sa, so

a € St, write @ = 1, for some f € S. This shows that M is pseudo quasi-principally injective. [

3.2.3 Theorem. Let M be a PO-P-injective module and s, t € S = End,(M).

(1) If s(M) embeds in (M), then Ss is an image of St.

(2) If s(M) = (M), then Ss = St.
Proof. (1) Letf: s(M) — #(M) be an R-monomorphism. Let 7, : s(M) — M and ¢, : {M) — M be
the inclusion maps. Since 1,/ is an R-monomorphism and M is PQ-P-injective, there exists an
R-homomorphism f : M — M such that fll = 1,f. Define o : St — Ss by o(ut) = ufs for every
u € S. To show that o is well-defined. Let ut = 0. To show that ufs = 0. Let m € M. Since
fo, = of, fs(m) = fy(s(m) = Lfism) = fs(m) so uf s(m) = ufs(m). Since f5(M) < €M),
ufs(M) < uwt(M) = 0. Hence ufs(M) = 0 and so ufs(m) = 0. To show that o 1is a left
S-homomorphism. Let ut, vi € St and let g € S. Then o(gut + vt) = of(gu +v)i] = (gu +v) fg=
gu fstvis= go(ut)+ o(vt). Now we show that Ker( fs) = Ker(s). Let x € Ker( f s). Then fs(x) =0.
Then fs(x) = 0 so s(x) = 0 because f is monic. This shows that Ker( fs) c Ker(s). It is clear that
Ker(s) < Ker(fs). Then Ker(fs) = Ker(s). Hence by Theorem 3.2.2 Ss = Stssos=ufs for

some u € S, hence s = u fs= o(ut) € o(Sy). It follows that Ss = o(S¢). This shows that o is an

S-epimorphism.
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(2) Let f: s(M) — HM) be an R-isomorphism. Let L : s(M) — M and
1, : (M) — M be the inclusion maps. Since z,/'is an R-monomorphism and M is PO-P-injective,
there exists an R-homomorphism f: M — M such that le = 1f. Define o : St — Ss by
olut) = ufs for every u € S. The same argument as in (1), we show that o'is a left S-epimorphism.
To show that o is a left S-monomorphism. That is, show that Ker(o) = {0}. (D) is clear. (C) Let
ut € Ker(0). Thus o(ut) = 0, so ufs = 0. Since {s(M) = dM), uf s(M) = ut(M) hence ut(M) = 0.

This shows that uz = 0. It follows that Ker(o) c {0}. [

Clearly, every X-cyclic submodule of X is an M-cyclic submodule of M for every M-cyclic

submodule X of M. Thus we have the following

3.2.4 Proposition. N is PM-P-injective if and only if N is PX-P-injective for every M-cyclic

submodule X of M.

Proof. (=) Let X = s(M) be an M-cyclic submodule of M , #(X) be an X-cyclic submodule of X
and let « : #(X) — N be an R-monomorphism. Since s € S and ts(M) = #(X), #(X) is an M-cyclic
submodule of M. Since N is PM-P-injective, there exists an R-homomorphism @ : M — N
such that a = 0?1211 where 1, : s(M) — M and ¢4 : (X) — s(M) are the inclusion maps. Then

at, is the extension of a. This shows that N is PX-P-injective.

(<«=) It is clear because M is an M-cyclic submodule of M. ]

3.2.5 Lemma. Let M be pseudo quasi-principally injective. If A is a direct summand of M,

then A is PM-P-injective.

Proof. Let A4 be a direct summand of M. Lets € S and « : s(M) — A4 be an R-monomorphism. Let
@ : A — M be the injection map. To show that Ker(pa) = 0. Let s(m) € Ker(¢). Then
@a(s(m)) = 0. Since @ als(m))) = als(m)) + 0, as(m)) = 0. Hence s(m) = 0 because « is monic.
Then @a : s(M) — M is an R-monomorphism. Since M is POP-injective and s(M) is an M-cyclic
submodule of M, there exists an R-homomorphism & : M — M such that pa = Qi where

A

1: 8(M) — M is the inclusion map. Let 7 : M — A be the projection map. Then mpa = nal .
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Since 7p = 1,, a = zai . Therefore 7¢r is an extension of a. This shows that A4 is pseudo

M-principally injective. (]

Let M be a right R-module and S = End(M). Following [11], we write
W(S)={weS:Ker(w)c* M}.

It is known that W (S) is an ideal of S.

3.2.6 Proposition. Let M be a PQ-P-injective module and S = End(M).
(1) 1 SIW(S) is regular, then J(S) = W(S).
(2) If SIXS) is regular, then S/W(S) is regular if and only if J(S) = W(S).
(3) If Im(s) c® M where s € S, then any R-monomorphism @ : s(M) — M can be

extended to an R-monomorphism in S.

Proof. (1) (D) Let s € WAS) and let t € S. To show that Ker(s) N Ker(1-ts) = 0. Let x €
Ker(s) N Ker(1—ts). Then x € Ker(s) and x € Ker(1—ts) so s(x) = 0 and (1 —#s)(x) = 0. Hence
1(x) = H(s(x)) so x = 1(x) = H(s(x)) = 0. Since Ker(s) <=® M, Ker(1—ts) = 0. Thus S = S(1 —ts) by
Theorem 3.2.2. Since 1 € S, 1 € S(1—1s). Write 1 =g(1—ts) for some g € S. Then by Proposition
2.11.3, s € J(S). This shows that W(S) < J(S). (<) Lets € J(S). Since S/W(S) is regular, s = sas
for some a € S/W(S) by Definition 2.12.1. Then s — sas =0 € W(S). Hence (1 —sa)s =5 —sas €
W(S), so (1 — sa)s € W(S). By Proposition 2.11.3, we have 1 — s« has an inverse. Let g be an
inverse of 1 — sa. Thus g(1 — sa) = 1. Then s = 1s = g(1 — sa)s € W(S), so s € W(S). This shows
that J(S) < W(S).

(2 (=) By ().

(<=) Since S/J(S) is regular and J(S) = WA(S), S/W(S) is regular.

(3) Let ¢ : s(M) — M be an R-monomorphism. Since M is POP-injective module,
there exists R-homomorphism g : M — M such that ¢ = g1z where ¢ : (M) — M is the inclusion
map. Then ¢ = gis = gs. Let x € Im(s) N Ker(g). Then x € Im(s) and x € Ker(g). Hence x = s(m)

for some m € M and g(x) = 0. Thus ¢@s(m)) = g(s(m)) = g(x) = 0, so @(s(m)) = 0. Since @ is
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monic, s(m) = 0. Then x = s(m) = 0. This shows that Im(s) | Ker(g) = 0. Since Im(s) c® M,

Ker(g) = 0. Therefore g is an R-monomorphism. [l

3.2.7. Lemma. Let M be a pseudo quasi-principally injective module and S = End p(M).
(1) If's(M) is a simple right R-module, s € S, then Ss is a simple left S-module.

(2) IfSis local, then J(S)={ s €S : Ker(s) #0 }.

Proof. (1) Let 4 be a nonzero submodule of Ss and 0 # as € A. Then Sas < A. Suppose
Ker(a) N s(M) # 0. Since s(M) is simple and Ker(@) N s(M) < s(M), Ker(c) N s(M) = s(M).
Hence s(M) < Ker(ax), so as(M) = 0. Thus as = 0, a contradiction so Ker(c) () s(M4) = 0. Then
Ker(as) = Ker(s). Hence Sas = Ss by Theorem 3.2.2. Since Sas < 4 < Ss, A = Ss.

(2) Since S is local, Ss # S for any s € J(S) by Proposition 2.11.6. To show that
JS)={seS:Ker(s) #0 }. (<) Let s € J(S). To show that Ker(s) # 0. Suppose that Ker(s) = 0.
Define « : s(M) — M given by ads(m)) = m for any m € M. Let 0 = s(m) € s(M). Then
m € Ker(s) = 0, so m = 0. Hence afs(m)) = m = 0. This shows that & is well-defined. Let s(m),
s(m,) € s(M) and r € R. Then as(m)r+ s(m,)) = os(m,7) +s(m,)) = es(mr +m,)) = m,r +m,
= a(s(ml))r + a(s(mz)). This shows that & is an R-homomorphism. To show that & is an
R-monomorphism. That is Ker() = 0. Let s(m) € Ker(c). Then als(m)) =0, so m = adls(m)) = 0.
Hence s(m) = s(0) = 0. Since M is pseudo quasi-principally injective, there exists an R-
homomorphism f: M — M such that & = St where 1 : (M) — M is the inclusion map. It follows
that fis = fis = as = 1,,and hence fs = 1,,, so Ker(fis) = Ker(1,,). Then S = Sfs by Theorem 3.2.2.
Since SBs < Ss, S = Ss which is a contradiction. This shows that J(S) = { s € S : Ker(s) # 0 }.
(D) Lets € { seS: Ker(s) # 0}. Since Sis local, J(S) = { s €S : Ss#S }. To show that Ss # S.
Suppose that Ss = S. Then fs = 1,, for some f € S. Since Ker(1,) = 0, Ker(fs) = 0. We have

Ker(s) < Ker(fs). Then Ker(s) = 0, a contradiction. 0
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An R-module M is called 7 -injective [14] if for all submodule U and V of M with

U N V=0, there exists f € S with U < Ker(f) and V < Ker(1-f). A nonzero module M is called

uniform if every non-zero submodule of M is essential in M.

3.2.8 Proposition. Let M be a PO-P-injective module.
(1) If S'is local and M is 7-injective, then M is uniform.

(2) If M is uniform, then Z (SS ) < J(S).

Proof. (1) Let U and V be submodules of M such that U () V' = 0. Since M is z-injective, there
exists /'€ S with U < Ker(f) and ¥V < Ker(1—f'). Since S is local, we have f'€ J(S) or 1 -f € J(S),
by Proposition 2.11.6. If f'€ J(S), then 1 —f has an inverse by Proposition 2.11.3. Hence 1 —f
is monic, Ker(1—-f) = 0. Since V < Ker(1—f'), V= 0. Otherwise U = 0.

(2) Lets € Z(Sg)and 0 # 7 € S. Since Ig (s) <=°S, there exists /'€ S such that
0+fte rg (s) by Proposition 2.2.4. Then s(ff) = 0. If Ker(s) = 0, then s is monic. Since s(f?) = 0,
ft = 0, a contradiction. This shows that Ker(s) # 0. Since M is uniform, Ker(s) c* M. LetteS.
To show that Ker(s) N Ker(1-ts) = 0. Let x € Ker(s) [ Ker(1—1ts). Then x € Ker(s) and x €
Ker(1—ts) so s(x) = 0 and (1-£s)(x) = 0. Hence 1(x) = #(s(x)) so x = 1(x) = #(s(x)) = #0) = 0. Since
Ker(s) < M, Ker(1-ts) = 0. Then Ker(1-1s) = Ker(1,,). Thus S = S(1-%s) by Theorem 3.2.2. Since

1 €8S, 1eS(1-ts). Write 1 =g(1—£s) for some g € S. This shows that s € J(S). []

Following [9], a ring R is called semiregular if R/J(R) is regular and idempotent can be
lifted modulo J(R), equivalently, R is semiregular if and only if each element a € R, there exists

¢ =e € Rasuch that a(1 — e) € J(R).

3.2.9. Theorem. For a pseudo quasi-principally injective module M, if S is semiregular,
then for every s € S\J(S), there exists a nonzero idempotent & € Ss such that Ker(s) C Ker(q)

and Ker(s(1-x)) # 0.
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Proof. Let s € S\J(S). Since § is a semiregular ring, there exists a2 = a € Ss such that
s(1—a) € J(S). Then o = a=fs forsome f € S.If @ =0, then s = 5(1-0) = s(1-a) € J(S), a
contradiction. This shows that & # 0. Let x € Ker(s). Then s(x) = 0. Hence a(x) = f$(x) = f{s(x)) =
f0) =0, so x € Ker(). This shows that Ker(s) < Ker(c). Suppose that Ker(s(1-c)) = 0. Then
Ker(s(1-a)) = Ker(1 4~ Since M is PQ-P-injective module, by Theorem 3.2.2, Ss(1-a) = S. We
have 1, € §,s0 gs(1-) = 1, for some g € S. Then gs — gsar=1,,. Hence (gs —gs@)a=1,,a, so
gso— gsoc2 = . Thus gsa — gsoc2 =gsa—gsa = 0. It follows that & = 0, a contradiction. This

shows that Ker(s(1-a)) # 0. []
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ON PPQ-INJECTIVE AND PQP-INJECTIVE MODULES

N. GOONWISES ! AND S. WONGWAI?

Let M be a right R—module. The module M is called pseudo principally quasi-
injective (briefly, PPQ-injective) if, it is pseudo principally M-injective [2]. The
module M is called pseudo guasi-principally injective (briefly, PQP-injective) if, it
is pseudo M-principally injective [1]. In this paper, we give some characterizations
and properties of the two classes of modules.
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