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     ABSTRACT  

 

The purposes of this thesis are to (1) study the properties and characterizations of pseudo 

principally quasi-injective modules and pseudo quasi-principally injective modules, (2) study the 

properties and characterizations of endomorphism rings of the two types of modules, (3) extend the 

concepts of principally quasi-injective modules and quasi-principally injective modules and (4) find 

some relations between among the four types of modules mentioned.   

Let R be a ring. A right R-module M is called principally injective if every R-

homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from 

R to M. A right R-module N is called principally M-injective if every R-homomorphism from a 

principal submodule of M to N can be extended to an R-homomorphism from M to N. A right R-

module M is called principally quasi-injective if it is principally M-injective. A right R-module N is 

called M-principally injective if every R-homomorphism from an M-cyclic submodule of M to N 

can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-

principally injective if it is M-principally injective. The notion of principally quasi-injective 

modules and quasi-principally injective modules are extended to be pseudo principally quasi-

injective modules and pseudo quasi-principally injective modules, respectively. A right R-module N 

is called pseudo principally M-injective if every R-monomorphism from a principal submodule of M 

to N can be extended to an R-homomorphism from M to N. A right R-module M is called pseudo 

principally qausi-injective if it is pseudo principally M-injective. A right R-module N is called 

pseudo M-principally injective if every R-monomorphism from an M-cyclic submodule of M to N 

iii 

 



can be extended to an R-homomorphism from M to N. A right R-module M is called pseudo     

qausi-principally injective if it is pseudo M-principally injective.  

The results are as follows.  (1) Let M be a principal and pseudo principally quasi-injective 

module: (a) if M is weakly co-Hopfian, then M is co-Hopfian; (b) for a fully invariant essential 

submodule X of M, if X is weakly co-Hopfian, then M is weakly co-Hopfian; (c) if X is a principal 

and essential submodule of M and M is weakly co-Hopfian, then X is weakly co-Hopfian.  (2) Let M 

be a pseudo quasi-principally injective module and s, t ∈ S = EndR(M): (a) if s(M) embeds in t(M), 

then Ss is an image of St; (b) if s(M) ≅ t(M), then Ss ≅ St.  (3) Let M be a pseudo quasi-principally 

injective module and S = EndR(M): (a) if S/W(S) is regular, then J(S) = W(S); (b) if S/J(S) is regular,          

then S/W(S) is regular if and only if J(S) = W(S); (c) if Im(s) 
e⊂  M where s ∈ S, then any               

R-monomorphism ϕ  : s(M) → M can be extended to an R-monomorphism in S.  (4) For a pseudo 

quasi-principally injective module M, if S is semiregular, then for every s ∈ S \ J(S), there exists      

a nonzero idempotent α ∈ Ss such that Ker(s) ⊂ Ker(α) and Ker(s(1 – α)) ≠ 0.  

 

Keywords: pseudo principally quasi-injective modules, principally quasi-injective modules, 

endomorphism rings 
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CHAPTER 1 

 

INTRODUCTION 

 

In modules and rings theory research field, there are three methods for doing the research. 

Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings. 

Secondly, to study about the modules over special rings.  Thirdly, to study about ring R by way of 

the categories of R-modules. Many mathematicians have concentrated on these methods. 

 

1.1 Background and Statement of the Problems 

Many generalizations of the injectivity were obtained, e.g., principally injectivity. In [2], 

V. Camillo introduced the definition of principally injective modules by calling a right R-module M 

is principally injective if every R-homomorphism from a principal right ideal of R to M can be 

extended to an R-homomorphism from R to M. 

In [10], W. K. Nicholson and M. F. Yousif studied to the structure of principally injective 

rings. They gave some applications of these rings and modules. A ring R is called right principally 

injective if every R-homomorphism from a principal right ideal of R to R can be extended to an R-

homomorphism from R to R.  

In [11], W. K. Nicholson, J. K. Park and M. F. Yousif introduced the definition of 

principally quasi injective modules by calling a right R-module M is principally quasi-injective if 

every R-homomorphism from a principal submodule of M to M can be extended to an R-

endomorphism of M. 

In [12], N. V. Sanh, K. P. Shum, S. Dhompomgsa and S. Wongwai introduced the 

definitions of quasi principally injective modules. A right R-module M is quasi-principally injective 

if every R-homomorphism from an M-Cyclic submodule of M to M can be extended to M. 

In [19], Z. Zhanmin introduced the definitions of pseudo principally quasi injective 

modules. A right R-module M is pseudo principally quasi-injective if every R-monomorphism from 

a principal submodule of M to M can be extended to M. 
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1.2 Purpose of the Study 

In this thesis, we have the purposes of study which are to extend concept of the previous 

works and to generalize new concepts which are : 

1.2.1  To extend the concept of principally injective modules. 

1.2.2 To generalize the concept of principally quasi injective modules and quasi 

principally injective modules. 

1.2.3 To establish and extend some new concepts which is pseudo principally quasi-

injective modules [19]. 

 

1.3  Research Questions and Hypothesis 

We are interested in seeing to extend the characterizations and properties which remain 

valid from these previous concepts which can be extended from principally injective modules [2],   

principally-injective rings [10], principally quasi-injective modules [11], quasi-principally injective 

modules [12], and pseudo principally quasi-injective modules [19].        

In this research, we introduce the definition of pseudo principally quasi-injective modules 

and pseudo quasi-principally injective modules and give characterizations and properties of these 

modules which are extended from the previous works. By let M be a right R-module. A right R-

module N is called pseudo principally M-injective if every R-monomorphism from a principal 

submodule of M to N can be extended to an R-homomorphism from M to N. Dually, a right R-

module M is called pseudo principally quasi-injective if it is pseudo principally M-injective. And a 

right R-module N is called pseudo M-principally injective if every R-monomorphism from an M-

cyclic submodule of M to N can be extended to an R-homomorphism from M to N. Dually, a right 

R-module M is called pseudo quasi-principally injective if it is pseudo M-principally injective. 

Many of results in this research are extended from principally-injective rings [10], principally 

quasi-injective modules [11], quasi-principally injective modules [12], endomorphism ring of semi-

injective module [16], and pseudo principally quasi-injective modules [19]. 
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1.4  Theoretical Perspective 

    In this thesis, we use many of the fundamental theories which are concerned to the rings 

and modules research. By the concerned theories are : 

    1.4.1  The fundamental of algebra theories. 

    1.4.2  The basic properties of rings and modules theory. 

 

1.5  Delimitations and Limitations of the Study 

For this thesis, we have the scopes and the limitations of studying which are concerned to 

the previous works which are:         

    1.5.1  To extend the concept of principally quasi injective modules and quasi principally 

injective modules.  

    1.5.2  To extend the concept of pseudo principally quasi-injective modules and pseudo 

quasi-principally injective modules.       

    1.5.3  To characterize the concept in 1.5.2 and find some new properties.  

  

1.6  Significance of the Study    

    The advantage of education and studying in this research, we can improve and develop 

the concepts and knowledge in the algebra and modules research field. 



CHAPTER 2 

 

LITERATURE REVIEW 

 

In this chapter we give notations, definitions and fundamental theories of the modules 

and rings theory which are used in this thesis. 

 

2.1  Rings, Modules, Submodules and Endomorphism Rings 

This section is assembled summary of various notations, terminology and some 

background theories which are concerned and used for this thesis. 

2.1.1 Definition. [15] By a ring we mean a nonempty set R with two binary operations   

+ and • , called addition and multiplication (also called product), respectively, such that 

 (1)  ( R, +) is an additive abelian group.  

 (2)  ( R, •) is a multiplicative semigroup.     

 (3) Multiplication is distributive (on both sides) over addition; that is, for all          

a, b, c ∈ R, a•(b+c) = a•b+a•c  and  (a+b) •c = a•c+b•c.               

  The two distributive laws are respectively called the left distributive law and the 

right distributive law.                     

  A commutative ring is a ring R in which multiplication is commutative; i.e. if     

a•b = b•a for all a , b ∈ R. If a ring is not commutative it is called noncommutative.  

  A ring with unity is a ring R in which the multiplicative semigroup ( R, •) has an 

identity element; that is, there exists e ∈ R such that ea = a = ae for all a  ∈ R. The element e is 

called unity or the identity element of R. Generally, the unity or identity element is denoted by 1. 

  In this thesis, R will be an associative ring with identity. 

2.1.2  Definition. [15] A nonempty subset I of a ring R is called an ideal of R if  

   (1)  a, b ∈ I implies a – b ∈ I.     

   (2)  a ∈ I and r ∈ R imply ar ∈ I and ra ∈ I. [14, C10]                 



                                                                                                                                                          5 

 

2.1.3  Definition. [14] A subgroup I of ( R, +) is called a left ideal of R if RI ⊂ I, and        

a right ideal if IR ⊂  I. [13, 1]          

2.1.4  Definition. [15] A right ideal I of a ring R is called principal if I = aR for some         

a ∈ R. 

2.1.5  Definition. [15] Let R be a ring, M an additive abelian group and (m, r) mr,         

a mapping of  M × R into M such that       

        (1)  mr ∈ M              

    (2)  (m1+ m2)r = m1r + m2r      

         (3)  m(r1+ r2) = mr1+ mr2      

               (4)  (mr1)r2 = m(r1r2)       

    (5)  m•1 = m    

for all r, r1 , r2 ∈ R and m, m1 , m2 ∈ M. Then M is called a right R-module, often written as MR. 

        Often mr is called the scalar multiplication or just multiplication of m by r on 

right. We define left R-module similarly. [14, C14] 

2.1.6  Definition. [14] Let M be a right R-module. A subgroup N of (M, +) is called a 

submodule of M if N is closed under multiplication with elements in R, that is nr ∈ N for all n ∈ N, 

r ∈ R. Then N is also a right R-module by the operations induced from M :   

         N × R → N, (n, r) nr, for all n ∈ N, r ∈ R. [13, 6.2] 

2.1.7  Proposition. A subset N of an R-module M is a submodule of M if and only if

      (1)  0 ∈ N.        

   (2)  n1, n2 ∈ N implies n1−  n2 ∈ N.     

   (3)  n ∈ N, r ∈ R implies nr ∈ N.  

Proof.  See [16, Lemma 5.3].                                            � 
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2.1.8  Definition. [1] Let M be a right R-module and let K be a submodule of M. Then the 

set of cosets     

       M/K = { x + K | x ∈ M }             

is a right R-module relative to the addition and scalar multiplication defined via   

    ( x + K ) + ( y + K ) = ( x + y) + K    and    ( x + K )r = xr + K.       

The additive identity and inverses are given by       

                    K = 0 + K    and    − ( x + K ) = −x + K. 

  The module M/K is called ( the right R-factor module of ) M modulo K or            

the factor module of M by K. [1, p33] 

2.1.9  Definition. [14] Let M and N be right R-modules. A function f : M → N is called  

an ( R-module ) homomorphism if for all m, m1, m2 ∈ M and  r ∈ R    

    f ( m1r + m2) = f ( m1)r + f ( m2).                                                      

Equivalently,  f ( m1 + m2) = f ( m1) + f ( m2)  and  f ( mr) = f ( m)r.     

 The set of R-homomorphisms of M in N is denoted by HomR(M, N ). In particular, 

with this addition and the composition of mappings, HomR(M, M ) = EndR(M ) becomes a ring, 

called the endomorphism ring of M and f ∈ EndR(M ) is called an R-endomorphism. [14, 6.4] 

2.1.10  Definition. [1] Let f : M → N be an R-homomorphism. Then            

   (1)  f is called R-monomorphism (or R-monic) if f is injective (one-to-one). 

   (2)  f is called R-epimorphism (or R-epic) if f is surjective (onto).  

   (3)  f is called R-isomorphism if f is bijective (one-to-one and onto).   

   Two modules M and N are said to be R-isomorphic, abbreviated M ≅ N in case 

there is an R-isomorphism f : M → N.[1, p43]   

2.1.11  Definition. [1] Let K be a submodule of M. Then the mapping ηK : M → M/K  

from M onto the factor module M/K defined by  [1, p43]    
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               ηK ( x) = x + K ∈ M/K  ( x ∈ M )            

is seen to be an R-epimorphism with kernel K. We call ηK the natural epimorphism of M onto M/K. 

2.1.12  Definition. [1] Let A ⊂ B. Then the function ι = ι A ⊂ B : A → B defined by           

ι = (1B | A) : a a for all a ∈ A is called the inclusion map of A in B. Note that if  A ⊂ B and A ⊂ C, 

and if B ≠ C, then ιA ⊂ B ≠ ιA ⊂ C . Of course 1A = ιA ⊂ A. [1, p2] 

2.1.13  Definition. [15] Let M and N be right R-modules and let f : M → N be an            

R-homomorphism. Then the set [14,c14,3]       

      Ker ( f )  = { x ∈ M | f ( x) = 0 } is called the kernel of f   

and   

        f ( M )  = { f ( x) ∈ N  | x ∈ M } is called the homomorphic image (or simply image)   

of M under f and is denoted by Im( f ).   

2.1.14  Proposition. Let M and N be right R-modules and let f : M → N be an                  

R-homomorphism. Then      

         (1)  Ker ( f ) is a submodule of M.     

      (2)  Im( f ) = f ( M ) is a submodule of N.                    

Proof.  See [14, 6.5].                                            � 

2.1.15  Proposition. Let M and N be right R-modules and let f : M → N be an                

R-isomorphism. Then the inverse mapping  f -1: N → M is an R-isomorphism.      

Proof.  See [15, Chapter 14, 3].                              � 

2.1.16  Definition.  [20] A submodule K of the module M is fully invariant in M if    

f(K) ⊂ K for every endomorphism f of M.        
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2.2  Essential and Superfluous Submodules      

    In this section, we give the definitions of essential and superfluous submodules and some 

theories which are used in this thesis.    

2.2.1 Definition. [14] A submodule K of M is called essential (or large) in M, 

abbreviated K e⊂ M, if for every submodule L of M, K ∩ L = 0 implies L = 0. [13, 17.1] 

2.2.2  Definition. [14] A submodule K of M is called superfluous (or small ) in M, 

abbreviated K ≪ M, if for every submodule L of M, K + L = M implies L = M. [13, 19.1] 

2.2.3  Proposition. Let M be a right R-module with submodules K ⊂ N ⊂ M and           

H ⊂ M. Then      

    (1)  K e⊂ M  if and only if  K e⊂ N and  N e⊂ M.  

       (2)  K∩H e⊂ M  if and only if  K e⊂ M and  H e⊂ M.      

Proof.  See [1, Proposition 5.16].                 � 

2.2.4  Proposition. A submodule K ⊂ M is essential in M if and only if for each  0 ≠ x ∈ 

M  there exists an  r ∈ R  such that  0 ≠ xr ∈ K.       

Proof.  See [1, Proposition 5.19].                    � 

2.2.5  Definition. [7]  Let R be a ring and M is a right R-module. M is co-Hopfian if any 

injective endomorphism of M is an isomorphism. A right R-module M is weakly co-Hopfian if any 

injective endomorphism f of M is essential; that is, ( ) ef M M⊂ .  

2.2.6 Definition. [1] A nonzero module M is uniform if every non-zero submodule of M 

is essential in M.          

                  

2.3  Annihilators and Singular Modules       

    In this section, we give the definitions of annihilators, singular modules and some 

theories which are used in this thesis.   
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2.3.1  Definition. [1] Let M be a right (resp. left) R-module. For each X ⊂ M, the right 

(resp. left) annihilator of X in R is defined by      

   rR( X ) = { r ∈ R | xr = 0, ∀x∈ X } ( resp. lR( X ) = { r ∈ R | rx = 0, ∀x∈ X }).    

For a singleton {x}, we usually abbreviated to rR( x )  ( resp. lR( x ) ). [1, p37] 

2.3.2  Proposition. Let M be a right R-module, let X and Y be subsets of M and let A   

and B be subsets of R. Then        

    (1)  rR( X ) is a right ideal of R.      

    (2)  X  ⊂  Y  imples  rR( Y )   ⊂  rR( X ).     

    (3)  A  ⊂  B  imples  lM ( B )   ⊂  lM ( A ).     

    (4)  X  ⊂  lM rR( X )  and  A  ⊂ rR lM ( A ).                   

Proof.  See [1, Proposition 2.14 and Proposition 2.15].                 �  

2.3.3 Proposition. Let M and N be right R-modules and let f : M → N be a 

homomorphism. If N’ is an essential submodule of N, then f -1( N’ ) is an essential submodule of M. 

Proof.  See [4, Lemma 5.8(a)].                    � 

2.3.4   Proposition.  Let M be a right R-module over an arbitrary ring R, the set 

      Z( M ) = { x ∈ M | rR( x ) is essential in RR }                                         

is a submodule of M.           

Proof.  See [4, Lemma 5.9].                              �  

2.3.5 Definition. [4] The submodule Z( M ) = { x ∈ M | rR( x ) is essential in RR }           

is called the singular submodule of M. The module M is called a singular module if Z( M ) = M.    

The module M is called a nonsingular module if Z( M ) = 0.      

  

2.4  Maximal and Minimal Submodules  

    In this section, we give the definitions and some properties of maximal submodules, 

minimal (or simple) submodules and some theories which are used in this thesis. 
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2.4.1  Definition. [14] A right R-module M is called simple if M ≠ 0 and M has no 

submodules except 0 and M. [13, 6.2] 

2.4.2  Definition. [14] A submodule K of M is called maximal submodule of M if              

K ≠ M and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if,      

K ≠ M and for every A ⊂ M, K ⊂ A implies K = A. [13, 6.7] 

2.4.3  Definition. [14] A submodule N of M is called minimal (or simple) submodule      

of M if N ≠ 0 and it has no non zero proper submodules of M, i.e. N is minimal (or simple) in M        

if N ≠ 0 and for every nonzero submodules A of M, A ⊂ N implies A = N. [13, p115] 

2.4.4  Proposition.  Let M and N be right R-modules. If f : M → N is an epimorphism 

with Ker ( f ) = K, then there is a unique isomorphism σ : M/K → N such that σ  (m+K ) = f (m)   

for all m ∈M.                                                                                                                    

Proof.  See [1, Corollary 3.7].                               � 

2.4.5  Proposition.  Let K be a submodule of M. A factor module M/K is simple if and 

only if K is a maximal submodule of M.         

Proof.  See [1, Corollary 2.10].                              � 

 

2.5  Injective and Projective Modules       

    In this section, we give the definitions of the injective modules and some theories which 

are used in this thesis. 

2.5.1  Definition. [1] Let M be a right R-module. A right R-module U is called injective 

relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism              
ϕ : K → U can be extended to a homomorphism α : M → U. [1, p184]   

      A right R-module U is said to be injective if it is M-injective for every right          

R-module M. 
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2.5.2  Proposition.  The following statements about a right R-module U are equivalent :

   (1)  U is injective;       

   (2)  U is injective relative to R;      

   (3)  For every right ideal I ⊂ RR and every homomorphism h : I → U there exists 

an x ∈ U such that h is left multiplicative by x       

           h(a) = xa for all a ∈ I.                                               

Proof.  See [1, 18.3, Baer’s Criterion].                   � 

2.5.3  Definition. [1] Let M be a right R-module. A right R-module U is called projective 

relative to M (or U is M-projective) if for every NR , every epimorphism g : MR→ NR , for every 

homomorphism γ : UR→ NR can be lifted to an R-homomorphism γ̂ : U → M. [1, p184]   

               A right R-module U is said to be projective if it is projective for every right           

R-module M. 

2.5.4  Proposition. Every right (resp. left) R-module can be embedded in an injective 

right (resp. left) R-module.          

Proof.  See [1, Proposition 18.6].                           � 

 

2.6  Direct Summands and Product of Modules                         

    Given two modules M1 and M2 we can construct their Cartesian product M1 × M2.       

The structure of this product module is then determined “co-ordinatewise” from the factors             

M1 × M2. For this section we give the definitions of direct summand, the projection and the 

injection maps, product of modules and some theories which are used in this thesis. 

2.6.1  Definition. [1] Let M be a right R-module. A submodule X of M is called a direct 

summand of M if there is a submodule Y of M such that X ∩ Y = 0 and X + Y = M. We write              

M = X ⊕ Y; such that Y is also a direct summand. [1, p66]  
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2.6.2  Definition. [1] Let M1 and M2 be R-modules. Then with their products module     

M1 × M2 are associated the natural injections and projections    

            ϕj : Mj  → M1 × M2 and πj : M1 × M2 → Mj             

( j = 1, 2 ),  are defined by        

      ϕ1( x1) = (x1, 0),  ϕ2( x2) = (0, x2)                     

and     

       π1( x1, x2) = x1,  π2( x1, x2) = x2.            

Moreover, we have  

         π1ϕ1  = 1
1M           and    π2ϕ2 = 1

2M .[1, p67] 

2.6.3  Definition. [1] Let A be a direct summand of M with complementary direct 

summand B, so  M = A ⊕ B. Then        

              πA : a + b a  ( a ∈ A, b ∈ B )                   

defines an epimorphism  πA : M → A  is called the projection of M on A along B. [1, p69] 

2.6.4  Definition. [14] Let {Ai , i ∈ I } be a family of objects in the category C.            

An object P in C with morphisms { πi : P → Ai } is called the product of the family {Ai , i ∈ I } 

if :      

    For every family of morphisms { fi : X → Ai } in the category C, there is a 

unique morphism  f : X → P  with πi f = fi for all i ∈ I.      

    For the object P, we usually write ∏
∈ I  i iA , ∏ I iA or ∏ iA . If all Ai are equal to 

A, then we put ∏ I iA = AI. [13, 9.1]         

    The morphism πi are called the i-projections of the product. The definition can be 

described by the following commutative diagram :  
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    2.6.5  Definition. [14] Let { Mi , i ∈ I } be a family of R-modules and ( ∏
∈ I i 

iM , πi ) the 

product of the Mi . For m, n ∈ ∏
∈ I i 

iM , r ∈ R, using                           

         πi (m + n) = πi (m) + πi (n)     and     πi(mr) = πi (m)r,              

a right R-module structure is defined on ∏
∈ I i 

iM such that the πi are homomorphisms. With this 

structure ( ∏
∈ I i 

iM , πi ) is the product of the { Mi , i ∈ I } in R-module. [13, 9.3] 

2.6.6  Proposition.  Properties:       

  (1)  If  { fi : N → Mi , i ∈ I } is a family of morphisms, then we get the map 

   f : N → ∏
∈ I i 

iM       such that n ( fi(n))i ∈ I                      

and Ker ( f )  = ∩I Ker ( fi ) since f (n) = 0 if and only if fi(n) = 0 for all i ∈ I.    

      (2)  For every j ∈ I, we have a canonical embedding   

                           εj : Mj → ∏
∈ I i 

iM ,    such that mj ( mjδji )i ∈ I , mj ∈ Mj ,                    

with  εj πj = 1
jM , i.e. πj is a retraction and εj a coretraction.                     

 This construction can be extended to larger subsets of I : For a subset A ⊂ I         

we form the product ∏
∈A i 

iM and a family of homomorphisms  

         fj : ∏
∈A i 

iM → Mj ,  fj = 




−∈

∈

.AI

A for

j

j

for  
jπ

 

 

 

, 

0

 
          

Then there is a unique homomorphism            

∏ I iA iπ
iA

X
iff
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       εA : ∏
∈A i 

iM  → ∏
∈ I i 

iM  with  εAπj = 




−∈

∈

.AI

A for

j

j

for  
jπ

 

 

 

, 

0

 
                     

The universal property of ∏
∈A i 

iM yields a homomorphism            

         πA: ∏
∈ I i 

iM → ∏
∈A i 

iM with πAπj = πj for j ∈ I.           

Together this implies εAπAπj = εAπj = πj for all j ∈ I, and by the properties of the product ∏
∈A i 

iM , 

we get εAπA = 1
AM .  

Proof.  See [14, 9.3, Properties (1), (2)]                             �

  

2.7  Split Homomorphisms        

    Throughout this thesis, all rings R are associative with identity and all modules are 

unitary right R-modules. A submodule X of M is called a direct summand of M if there is a 

submodule Y of M such that X ∩ Y = 0 and X + Y = M. We will write M = X ⊕ Y. 

2.7.1  Lemma.  Let  f : M → N  and  g : N → M  be homomorphisms such that              

fg = 1N . Then f is an epimorphism, g is a monomorphism and  M = Ker( f ) ⊕ Im(g).  

Proof.  See [1, Lemma 5.1].                � 

If  f : M → N  and  g : N → M  be homomorphisms such that   fg = 1N , then we say that 

f is a split epimorphism (or splits), and we write 

M  —
f
⊕→  N →  0 ; 

and we say that g is a split monomorphism (or splits), and we write 

0 →   N  —
g
⊕→ M ;  

A short exact sequence 

1 20 0f gM M M→ → → →  



                                                                                                                                                          15 

 

is split (or splits) if f is a split monomorphism and g is a split epimorplism. 

2.7.2 Proposition  The following statements about a short exact sequence 

1 20 0f gM M M→ → → →   in M are equivalent :    

     (1)  The sequence is splits;      

  (2)  The monomorphism  f : M1 → M is split;    

  (3)  The epimorphism  g : M → M2 is split;    

  (4)  Im f = Ker g is a direct summand of M;    

  (5)  Every homomorphism h: M1 → N factors through f;   

  (6)  Every homomorphism h : N → M2 factors though g.    

Proof.  See [1, Propostion 5.2].                                    �

  

2.8  Generated and Cogenerated Classes      

    In this section, we give some definitions and theories of the generated and cogenerated 

classes which are concerned in this thesis. 

2.8.1  Definition. [14] A subset X of a right R-module M is called a generating set of M     

if  XR = M. We also say that X generates M or M is generated by X. If there is a finite generating set 

in M, then M is called finitely generated. [13, 6.6] 

2.8.2  Definition. [1] Let U be a class of right R-modules. A module M is ( finitely ) 

generated by U (or U ( finitely ) generates M ) if there exists an epimorphism [1, 8]    

     i
I i
U 

 ∈⊕  → M                          

for some (finite) set I and Ui ∈ U for every i ∈ I.               

    If U = {U} is a singleton, then we say that M is ( finitely ) generated by U          

or ( finitely ) U-generates; this means that there exists an epimorphism  

      U ( I )
 → M                         

for some (finite) set I. 
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2.8.3  Proposition.  If a module M has a generating set L ⊂ M, then there exists an 

epimorphism 

      R ( L ) → M  

Moreover, M is finitely R-generated if and only if M is finitely generated.     

Proof.  See [1, Theorem 8.1].                    � 

2.8.4  Definition. [18] Let M be a right R-module. A submodule N of M is said to be      

an M-cyclic submodule of M if it is the image of an endomorphism of M. 

2.8.5  Definition. [1] Let U be a class of right R-modules. A module M is ( finitely ) 

cogenerated by U (or U ( finitely ) cogenerates M ) if there exists a monomorphism  

      M → ∏
∈ I i 

iU                                      

for some (finite) set I and Ui ∈ U for every i ∈ I.      

     If U = {U} is a singleton, then we say that a module M is ( finitely ) cogenerated by U 

or ( finitely ) U-cogenerates; this means that there exists a monomorphism   

      M → U I                                       

for some (finite) set I.[1, 8]  

 

2.9  The Trace and Reject        

     In this section, we give some definitions and theories of the trace and reject which are 

concerned in this thesis.  

2.9.1  Definition. [1] Let U be a class of right R-modules. The trace of U in M and the 

reject of U in M are defined by        

  TrM (U) = ∑{ Im(h)  |  h : U → M  for some U ∈ U }  

and         

  RejM (U) = ∩{ Ker(h)  |  h : M → U  for some U ∈ U }.  
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If U = {U} is a singleton, then the trace of U in M and the reject of U in M are in the form 

  TrM (U ) = ∑{ Im(h)  |  h ∈ HomR(U, M ) }                        

and                  

  RejM (U ) = ∩{ Ker(h) |  h ∈ HomR(M, U ) }.[1, 8] 

2.9.2  Proposition.  Let U be a class of right R-modules and let M be a right R-module. 

Then 

       (1)  TrM (U) is the unique largest submodule L of M generated by U; 

   (2) RejM (U) is the unique smallest submodule K of M such that M/K is 

cogenerated by   U.            

Proof.  See [1, Proposition 8.12].                                      � 

 

2.10  Socle and Radical of Modules       

     In this section, we give some definitions and theories of the socle and radical of modules 

which are used in this thesis.  

2.10.1  Definition. [14] Let M be a right R-module. The socle of M, Soc(M ), we denote 

the sum of all simple submodules of M. If there are no simple submodules in M we put Soc(M ) = 0. 

2.10.2  Definition. [14] Let M be a right R-module. The radical of M, Rad( M ), we 

denote the intersection of all maximal submodules of M. If M has no maximal submodules we set          

Rad( M ) = M. 

2.10.3  Proposition.  Let ε  be the class of simple R-modules and let M be an R-module. 

Then    

    Soc( M )  =  TrM (ε )      

         =  ∩{ L ⊂ M  |  L is essential in M }.  

Proof.  See [14, 21.1].                     � 
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2.10.4  Proposition.  Let ε  be the class of simple R-modules and let M be an R-module. 

Then     

   Rad( M )   =  RejM (ε )      

         =  ∑{ L ⊂ M  |  L is superfluous in M }.     

Proof.  See [14, 21.5].                    � 

2.10.5  Proposition.  Let M be a right R-module. A right R-module M is finitely 

generated if and only if Rad( M ) ≪ M and M/Rad( M ) is finitely generated.    

Proof.  See [14, 21.6, (4)].                       � 

2.10.6  Proposition.  Let M be a right R-module. Then Soc( M ) e⊂ M if and only if 

every non-zero submodule of M contains a minimal submodule.     

Proof.  See [1, Corollary 9.10].                     � 

2.10.7  Corollary. [7]  Let RM  is weakly co-Hopfian and f is an injective endomorphism 

of M, then:          

     (1)  N e⊂ M  if and only if ( )f N e⊂ M and 1( )f N− e⊂ M.  

     (2) Soc(N) = ( )f N = 1( )f N−
 , where N runs through the set of all essential 

submodules of M.         

  

2.11  The Radical of a Ring and Local Rings      

    In this section, we give some definitions and theories of the radical of a ring and local 

rings which are used in this thesis.  

2.11.1  Definition. [1] Let R be a ring. The radical Rad( RR) of RR is an (two side) ideal 

of R. This ideal of R is called the ( Jacobson) radical of R, and we usually abbreviated by [1, 15]

             J( R)  = Rad( RR). 

2.11.2  Definition. [1] Let R be a ring. An element x ∈ R is called right ( left ) quasi-

regular if 1 – x has a right (resp. left ) inverse in R.                
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         An element x ∈ R is called quasi-regular if it is right and left quasi-regular.

     A subset of R is said to be ( right, left ) quasi-regular if every element in it has 

the corresponding property. 

2.11.3  Proposition.  Given a ring R for each of the following subsets of R is equal to the 

radical J(R) of R.         

    ( J1)  The intersection of all maximal right ( left ) ideals of R;  

    ( J2)  The intersection of all right ( left ) primitive ideals of R;  

    ( J3)  { x ∈ R |  rxs is quasi-regular for all r, s ∈ R };   

    ( J4)  { x ∈ R |  rx is quasi-regular for all r ∈ R };   

    ( J5)  { x ∈ R |  xs is quasi-regular for all s ∈ R };   

    ( J6)  The union of all the quasi-regular right ( left ) ideals of R;  

    ( J7)  The union of all the quasi-regular ideals of R;   

    ( J8)  The unique largest superfluous right ( left ) ideals of R;   

Moreover, ( J3), ( J4), ( J5), ( J6) and ( J7) also describe the radical J ( R)  if “quasi-regular” is 

replaced by “right quasi-regular” or by “left quasi-regular”.                              

Proof.  See [1, Theorem 15.3].                   �   

2.11.4  Proposition. Let R be a ring with radical J( R) . Then for every right R-module M, 

             J( R)MR ⊂ Rad( MR).               

If R is semisimple modulo its radical, then for every right R-module,   

          J( R)MR = Rad( MR)           

and M/J( R)MR is semisimple.          

Proof.  See [1, Corollary 15.18].                   � 

2.11.5  Definition.  A ring R is said to be local if the set of non-inverrtible elements of R 

is closed under addition. 
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2.11.6. Proposition.  For a ring R the following statements are equivalent:  

  (1)  R is a local ring;        

  (2)  R has a unique maximal right ideal;      

  (3)  J(R) is a maximal right ideal;      

  (4)  The set of elements of R without right inverses is closed under addition; 

  (5)  J(R) = { x R∈ Rx R≠  };      

  (6)  R/J(R)  is a division ring;      

  (7)  J(R) = { x R∈ x  is not invertible };     

  (8)  If x R∈ , then either x  or 1 x− is invertible .     

Proof.  See [1, Proposition 15.15]                �

                 

2.12  Von Neumann Regular Rings        

    In this section, we give some definitions and theories of Von Neumann regular rings 

which are used in this thesis. 

2.12.1  Definition.  A ring R is von Neumann regular if a aRa∈  for each a R∈ . 

2.12.2  Proposition.  The following statements are equivalent for a ring R: 

  (1)  R is von Neumann regular;      

  (2)  Every principal right ideal is a direct summand;    

  (3)  Every finitely generated right is a direct summand.     

Proof.  See  [3, 3.10]. 

2.12.3  Proposition.  Let M be a right R-module and S = End(MR). Then the following 

statements are equivalent:          

  (1)  S is von Neumann regular;        

  (2)  Im( f ) and Ker( f ) are direct summand of M for every f ∈  S.     

Proof.  See  [14, 37.7].                      � 



CHAPTER 3 

 

RESEARCH RESULT 

 

In this chapter, we present the results of pseudo principally quasi-injective modules and 

pseudo quasi-principally injective modules. 

 

3.1  Pseudo Principally Quasi-injective Modules 

3.1.1  Definition. [19] Let M be a right R-module. A right R-module N is called pseudo 

principally M-injective (briefly, PP-M-injective) if, every R-monomorphism from a principal 

submodule of M to N can be extended to M. The module M is called pseudo principally quasi-

injective (briefly, PPQ-injective) if, it is pseudo principally M-injective. 
 

3.1.2  Proposition. Let M and Ni (i = 1,2,…,n) be right R-modules. If 
1

n

ii
N

=
⊕  is PP-M-

injective, then Ni is PP-M-injective for each i = 1,2,…,n. 
 

Proof.  Let i ∈ { }1, 2,..., n . To show that Ni is PP-M-injective. Let m ∈ M and ϕ : mR → Ni be an 

R-monomorphism. Let πi : 
1

n

ii
N

=
⊕  → Ni be the i-th projection map and ϕi : Ni → 

1

n

ii
N

=
⊕  be the         

i-th injection map. Since ϕiϕ is an R-monomorphism, there exists an R-homomorphism                 

ϕ̂  : M → 
1

n

ii
N

=
⊕  such that ϕ̂ι  = ϕiϕ where ι : mR → M is the inclusion map. Then πiϕ̂ι  = πi ϕiϕ. 

Then by Definition 2.6.2,  πi ϕ̂ι  = ϕ. Hence πi ϕ̂  is an extension of ϕ.            � 
 

3.1.3  Lemma. Let B be a principal submodule of M. If B is PP-M-injective, then it is a 

direct summand of M. 
 

Proof.  Let B = mR, m ∈ M and B is PP-M-injective. Let ι : mR → M be the inclusion map and  

1mR  : mR → mR be the identity map. Since mR is PP-M-injective, there exists an R-homomorphism 

ϕ̂  : M → mR such that ϕ̂ι  = 1mR . Then we see that the short exact sequence 0 mR M
ι

→ →  splits. 



22 
 

Then by Proposition 2.7.2, mR = Im(ι ) is a direct summand of M. This shows that B is a direct 

summand of M.                       � 
 

3.1.4  Lemma. Let M be PPQ-injective. If A is a direct summand of M, then A is PP-M-

injective. 
 

Proof.  Let A be a direct summand of M. Let m ∈ M and α : mR → A be an R-monomorphism.    

Let ϕ : A → M be the injection map. Then ϕα : mR → M is an R-monomorphism. Since                 

M is PPQ-injective, there exists an R-homomorphism α̂  : M → M such that ϕα  = α̂ι  where         

ι : mR → M is the inclusion map. Let π : M → A be the projection map. Then πϕα  = ˆπαι .    

Since by Proposition 2.6.6, πϕ  = 1A , α  = ˆiπα . Therefore ˆπα  is an extension of α. This shows 

that A is PP-M-injective.                  � 
  

 A right R-module M is called co-Hopfian [7] if any injective endomorphism of M is an 

isomorphism. A right R-module M is called weakly co-Hopfian if any injective endomorphism f     

of M is essential; that is, f(M) e⊂  M. A submodule N of M is called a fully invariant submodule of 

M if s(N) ⊂  N for every s ∈ S = EndR(M).  
 

3.1.5  Proposition. Let M be a principal and PPQ-injective module. 

(1)  If M is weakly co-Hopfian, then M is co-Hopfian. 

(2)  For a fully invariant essential submodule X of M, if X is weakly co-Hopfian,  

then M is weakly co-Hopfian. 

(3)  If X is a principal and essential submodule of M and M is weakly co-Hopfian,  

then X is weakly co-Hopfian. 
 

Proof.  (1)  Let M be a weakly co-Hopfian module. Let f : M → M be an R-monomorphim. Since    

f is monic, f(M) ≅ M. We must show that f(M) is PP-M-injective. Let m ∈ M and α : mR → f(M) be 

an  R-monomorphism. Let σ : f(M) → M be the R-isomorphism. Since M is PPQ-injective, there 

exists an R-homomorphism α̂ : M → M such that σα = α̂ι  where ι : M → M is the inclusion map.    

Then 1σ σα−  = 1 ˆσ αι− , so α  = 1 ˆσ αι− . Hence f(M) is PP-M-injective. Since f(M) is a principal 

submodule of M, by Lemma 3.1.3, M = f(M)⊕ X for some submodule X of M. Thus f(M)X = 0 
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and M = f(M) + X. Since M is weakly co-Hopfian, f(M) e⊂  M. Hence X = 0. Therefore M = f(M). 

This shows that M is co-Hopfian.  

(2)  Let X be a fully invariant essential submodule of M and let X be weakly         

co-Hopfian. To show that M is weakly co-Hopfian. Let f : M → M be an R-monomorphism.      

Since X is fully invariant submodule of M, Xf  : X → X is an endomorphism of X. It follows     

that Xf  : X → X is an R-monomorphism. We must show that f(M) 
e⊂  M. Since X is weakly       

co-Hopfian, f(X) e⊂  X. Since X e⊂ M, f( X ) e⊂  M. Since f(X) ⊂  f(M) ⊂  M and f(X) e⊂  M, by 

Proposition 2.2.3 we have f(M) e⊂  M. Therefore M is weakly co-Hopfian. 

(3)  Let X = mR, for some m ∈ M, X be an essential submodule of M and let          

M be weakly co-Hopfian. To show that X is weakly co-Hopfian. Let f : X → X be an injective 

endomorphism of X. Since M is a PPQ-injective, there exists an R-homomorphism g : M → M   

such that ιf  = gι where ι : X → M  is the inclusion map. Since X is an essential submodule of M 

and Ker(g)   X = 0, so by Definition 2.2.1, Ker(g) = 0. Hence g is an R-monomorphism, so        

g(X) 
e⊂  M by Corollary 2.10.7. Since f(X) = ιf(X) = gι(X) = g(X), f(X) 

e⊂  M. Since f(X) ⊂  X ⊂  M,  

by Proposition 2.2.3 we have f(X) e⊂  X. Therefore X is weakly co-Hopfian.            � 

 

3.2  Pseudo Quasi-Principally injective Modules 

3.2.1  Definition. Let M be a right R-module. A right R-module N is called pseudo           

M-principally injective (briefly, PM-P-injective) if, every R-monomorphism from an M-cyclic 

submodule of M to N can be extended to an endomorphism of M. The Module M is called pseudo 

quasi-principally injective (briefly, PQ-P-injective) if it is PM-P-injective. 
 

3.2.2  Theorem.  Let M be a right R-module. Then M is PQ-P-injective if and only if  

Ker(s) = Ker(t),  s, t ∈ S = EndR(M) implies Ss = St. 
 

Proof.  (⇒ )  Let s, t ∈ S with Ker(s) = Ker(t). Define ϕ : s(M) → M by ϕ(s(m)) = t(m) for every        

.m M∈  We must show that ϕ is the well-defined. Let s(m1), s(m2) ∈ s(M) such that s(m1) = s(m2). 

Thus s(m1) – s(m2) = 0, so s(m1 – m2) = 0. Then m1 – m2 ∈ Ker(s) = Ker(t), so t(m1 – m2) = 0. 

Hence t(m1) = t(m2), so ϕ(s(m1)) = t(m1) = t(m2) = ϕ(s(m2)). Let s(m1), s(m2) ∈ s(M) and r ∈ R. 
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Then ϕ(s(m1)r + s(m2)) = ϕ(s(m1r) + s(m2)) = ϕ(s(m1r + m2)) = t((m1r + m2)) = t(m1r) + t(m2) = 

t(m1)r + t(m2) = ϕ(s(m1))r + ϕ(s(m2)). This shows that ϕ is an R-homomorphism. Let s(m1), s(m2) 

∈ s(M) such that ϕ(s(m1)) = ϕ(s(m2)). Then t(m1) = t(m2), so t(m1 – m2) = 0. Thus m1 – m2 ∈   

Ker(t) = Ker(s), so s(m1 – m2) = 0. Hence s(m1) – s(m2) = 0, so s(m1) = s(m2). This shows that ϕ     

is an R-monomorphism. Since M is pseudo quasi-principally injective and s(M) is an M-cyclic 

submodule of M, there exists an R-homomorphism ϕ̂ : M → M such that ϕ  = ϕ̂ι  where                  

ι : s(M) → M is the inclusion map. Thus t = sϕ  = ˆ sϕι  = ˆsϕ  ∈ Ss. Then St ⊂  Ss. Similarly,       

Ss ⊂  St, therefore Ss = St.                   

(⇐ ) Let s ∈ S and α : s(M) → M be an R-monomorphism. Then Ker(α) = Ker(ι). 

where ι : s(M) → M is the inclusion map. Then by assumption, Sα = Sι. We have α ∈ Sα, so           

α ∈ Sι, write α = βι, for some β ∈ S. This shows that M is pseudo quasi-principally injective.     � 
 

 3.2.3  Theorem. Let M be a PQ-P-injective module and s, t ∈ S = EndR(M). 

  (1)  If s(M) embeds in t(M), then Ss is an image of St. 

  (2)  If s(M) ≅ t(M), then Ss ≅ St. 

Proof.  (1)  Let f : s(M) → t(M) be an R-monomorphism. Let ι1 : s(M) → M and ι2 : t(M) → M be 

the inclusion maps. Since ι2f is an R-monomorphism and M is PQ-P-injective, there exists an              

R-homomorphism f̂ : M → M such that 1f̂ ι  = ι2f. Define σ : St → Ss by σ(ut) = ˆufs  for every    

u ∈ S. To show that σ is well-defined. Let ut = 0. To show that  ˆufs  = 0. Let m ∈ M. Since         

1f̂ ι  = ι2f, ˆ ( )fs m  = 1f̂ ι (s(m)) = ι2f(s(m)) = fs(m) so u f̂ s(m) = ufs(m). Since fs(M) ⊂  t(M),     

ufs(M) ⊂  ut(M) = 0. Hence ufs(M) = 0 and so ˆ ( )ufs m  = 0. To show that σ  is a left                        

S-homomorphism. Let ut, vt ∈ St and let g ∈ S. Then σ(gut + vt) = σ[(gu + v)t] = (gu + v) f̂ s =      

gu f̂ s + v f̂ s = gσ(ut) + σ(vt). Now we show that Ker( f̂ s) = Ker(s). Let x ∈ Ker( f̂ s). Then f̂ s(x) = 0. 

Then fs(x) = 0 so s(x) = 0 because f is monic. This shows that Ker( f̂ s) ⊂  Ker(s). It is clear that 

Ker(s) ⊂  Ker( f̂ s). Then Ker( f̂ s) = Ker(s). Hence by Theorem 3.2.2 Ss = S f̂ s so s = u f̂ s for   

some u ∈ S, hence s = u f̂ s = σ(ut) ∈ σ(St). It follows that Ss = σ(St). This shows that σ is an              

S-epimorphism. 
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  (2)  Let f : s(M) → t(M) be an R-isomorphism. Let ι1 : s(M) → M and                     

ι2 : t(M) → M be the inclusion maps. Since ι2f is an R-monomorphism and M is PQ-P-injective, 

there exists an R-homomorphism f̂ : M → M such that 1f̂ ι  = ι2f. Define σ : St → Ss by          

σ(ut) = ˆufs  for every u ∈ S. The same argument as in (1), we show that σ is a left S-epimorphism. 

To show that σ is a left S-monomorphism. That is, show that Ker(σ) = {0}. (⊃ ) is clear. (⊂ ) Let   

ut ∈ Ker(σ). Thus σ(ut) = 0, so u f̂ s = 0. Since f̂ s(M) = t(M), u f̂ s(M) = ut(M) hence ut(M) = 0. 

This shows that ut = 0. It follows that Ker(σ) ⊂  {0}.             � 
 

 Clearly, every X-cyclic submodule of X is an M-cyclic submodule of M for every M-cyclic 

submodule X of M. Thus we have the following 
 

3.2.4  Proposition. N is PM-P-injective if and only if N is PX-P-injective for every M-cyclic 

submodule X of M. 
 

Proof.  (⇒ )  Let X = s(M) be an M-cyclic submodule of M , t(X) be an X-cyclic submodule of X 

and let α : t(X) → N be an R-monomorphism. Since ts ∈ S and ts(M) = t(X), t(X) is an  M-cyclic 

submodule of M. Since N is PM-P-injective, there exists an R-homomorphism α̂  : M → N        

such that α  = 2 1α̂ι ι  where 2ι  : s(M) → M and 1ι  : t(X) → s(M) are the inclusion maps. Then    

2α̂ι  is the extension of α. This shows that N is PX-P-injective.  

(⇐ ) It is clear because M is an M-cyclic submodule of M.            � 
 

3.2.5  Lemma.  Let M be pseudo quasi-principally injective. If A is a direct summand of M, 

then A is PM-P-injective. 
 

Proof.  Let A be a direct summand of M. Let s ∈ S and α : s(M) → A be an R-monomorphism.  Let  

ϕ : A → M be the injection map. To show that Ker(ϕα) = 0. Let s(m) ∈ Ker(ϕα). Then      

ϕα(s(m)) = 0. Since ϕ(α(s(m))) = α(s(m)) + 0, α(s(m)) = 0. Hence s(m) = 0 because α is monic.  

Then ϕα : s(M) → M is an R-monomorphism. Since M is PQP-injective and s(M) is an  M-cyclic 

submodule of M, there exists an R-homomorphism α̂  : M → M  such that ϕα  = α̂ι  where             

ι : s(M) → M is the inclusion map. Let π  : M → A be the projection map. Then πϕα  = ˆiπα . 
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Since πϕ = 1A , α = ˆiπα . Therefore ˆπα  is an extension of α. This shows that A is pseudo            

M-principally injective.                              � 
 

 Let M be a right R-module and S = EndR(M). Following [11], we write 

{ }( ) : ( ) eW S w S Ker w M= ⊂∈ . 

  It is known that ( )W S  is an ideal of S. 
 

3.2.6  Proposition.  Let M be a PQ-P-injective module and S = EndR(M).  

  (1)  If S/W(S) is regular, then J(S) = W(S). 

  (2)  If S/J(S) is regular, then S/W(S) is regular if and only if J(S) = W(S). 

  (3)  If Im(s) 
e⊂  M where s ∈ S, then any R-monomorphism ϕ : s(M) → M can be 

extended to an R-monomorphism in S. 
 

Proof.  (1) (⊃ ) Let s ∈ W(S) and let t ∈ S. To show that Ker(s)   Ker(1–ts) = 0. Let x ∈       

Ker(s)   Ker(1 – ts). Then x ∈ Ker(s) and x ∈ Ker(1 – ts) so s(x) = 0 and (1 – ts)(x) = 0. Hence      

1(x) = t(s(x)) so x = 1(x) = t(s(x)) = 0. Since Ker(s) e⊂  M, Ker(1 – ts) = 0. Thus S = S(1 – ts) by 

Theorem 3.2.2. Since 1 ∈ S, 1 ∈ S(1 – ts). Write 1 = g(1 – ts) for some g ∈ S. Then by Proposition 

2.11.3, s ∈ J(S). This shows that W(S) ⊂  J(S). (⊂ )  Let s ∈ J(S). Since S/W(S) is regular, s = sαs 

for some α ∈ S/W(S) by Definition 2.12.1. Then s – sαs = 0 ∈ W(S). Hence (1 – sα)s = s – sαs ∈ 

W(S), so (1 – sα)s ∈ W(S). By Proposition 2.11.3, we have 1 – sα has an inverse. Let g be an 

inverse of 1 – sα. Thus g(1 – sα) = 1. Then s = 1s = g(1 – sα)s ∈ W(S), so s ∈ W(S). This shows 

that J(S) ⊂  W(S). 

(2)  (⇒ ) By (1). 

         (⇐ ) Since S/J(S) is regular and J(S) = W(S), S/W(S) is regular. 

(3) Let ϕ : s(M) → M be an R-monomorphism. Since M is PQP-injective module, 

there exists R-homomorphism g : M → M such that ϕ = gι where ι : s(M) → M is the inclusion 

map. Then ϕs = gιs = gs. Let x ∈ Im(s)   Ker(g). Then x ∈ Im(s) and x ∈ Ker(g). Hence x = s(m) 

for some m ∈ M and g(x) = 0. Thus ϕ(s(m)) = g(s(m)) = g(x) = 0, so ϕ(s(m)) = 0. Since ϕ is 
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monic, s(m) = 0. Then x = s(m) = 0. This shows that Im(s)   Ker(g) = 0. Since Im(s) e⊂  M,   

Ker(g) = 0. Therefore g is an R-monomorphism.                � 
 

3.2.7.  Lemma.  Let M be a pseudo quasi-principally injective module and S = EndR(M). 

  (1)  If s(M) is a simple right R-module, s ∈ S, then Ss is a simple left S-module. 

  (2)  If S is local, then J(S) = { s ∈ S : Ker(s) ≠ 0 }. 
 

Proof.  (1)  Let A be a nonzero submodule of Ss and 0 ≠ αs ∈ A. Then Sαs ⊂ A. Suppose       

Ker(α)   s(M) ≠ 0. Since s(M) is simple and Ker(α)   s(M) ⊂ s(M), Ker(α)   s(M) = s(M). 

Hence s(M) ⊂ Ker(α), so αs(M) = 0. Thus αs = 0, a contradiction so Ker(α)   s(M) = 0. Then 

Ker(αs) = Ker(s). Hence Sαs = Ss by Theorem 3.2.2. Since Sαs ⊂ A ⊂ Ss, A = Ss. 

(2)  Since S is local, Ss ≠ S for any s ∈ J(S) by Proposition 2.11.6. To show that 

J(S) = { s ∈ S : Ker(s) ≠ 0 }. (⊂ ) Let s ∈ J(S). To show that Ker(s) ≠ 0. Suppose that Ker(s) = 0. 

Define α : s(M) → M given by α(s(m)) = m for any m ∈ M. Let 0 = s(m) ∈ s(M). Then                  

m ∈ Ker(s) = 0, so m = 0. Hence α(s(m)) = m = 0. This shows that α is well-defined. Let s(m1), 

s(m2) ∈ s(M) and r ∈ R. Then α(s(m1)r + s(m2)) = α(s(m1r) + s(m2)) = α(s(m1r + m2)) = m1r + m2 

= α(s(m1))r + α(s(m2)). This shows that α is an R-homomorphism. To show that α is an               

R-monomorphism. That is Ker(α) = 0. Let s(m) ∈ Ker(α). Then α(s(m)) = 0, so m = α(s(m)) = 0.  

Hence s(m) = s(0) = 0. Since M is pseudo quasi-principally injective, there exists an R-

homomorphism β : M → M such that α = βι where ι : s(M) → M is the inclusion map. It follows 

that βs = βιs = αs = 1M and hence βs = 1M, so Ker(βs) = Ker(1M). Then S = Sβs by Theorem 3.2.2. 

Since Sβs ⊂ Ss, S = Ss which is a contradiction. This shows that J(S) ⊂ { s ∈ S : Ker(s) ≠ 0 }.  

(⊃ ) Let s ∈ { s ∈ S : Ker(s) ≠ 0}. Since S is local, J(S) = { s ∈ S : Ss ≠ S }. To show that Ss ≠ S. 

Suppose that Ss = S. Then fs = 1M for some f ∈ S. Since Ker(1M) = 0, Ker(fs) = 0. We have     

Ker(s) ⊂ Ker(fs). Then Ker(s) = 0, a contradiction.               � 
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An R-module M is called π -injective [14] if for all submodule U and V of M with             

U   V = 0, there exists f ∈ S with U ⊂  Ker( f ) and V ⊂  Ker( 1–f ). A nonzero module M is called 

uniform if every non-zero submodule of M is essential in M. 
 

 3.2.8  Proposition.  Let M be a PQ-P-injective module. 

  (1)  If S is local and M is π-injective, then M is uniform. 

  (2)  If M is uniform, then ( )Z SS  ⊂ J(S). 
 

Proof.  (1)  Let U and V be submodules of M such that U   V = 0. Since M is π-injective, there 

exists f ∈ S with U ⊂ Ker( f ) and V ⊂ Ker(1 – f ). Since S is local, we have f ∈ J(S) or 1 – f ∈ J(S), 

by Proposition 2.11.6. If f ∈ J(S), then 1 – f has an inverse by Proposition 2.11.3. Hence 1 – f           

is monic, Ker(1 – f ) = 0. Since V ⊂ Ker(1 – f ), V = 0. Otherwise U = 0. 

(2)  Let s ∈ ( )Z SS and 0 ≠ t ∈ S. Since ( )r sS  
e⊂ S, there exists f ∈ S such that       

0 ≠ ft ∈ ( )r sS  by Proposition 2.2.4. Then s(ft) = 0. If Ker(s) = 0, then s is monic. Since s(ft) = 0,  

ft = 0, a contradiction. This shows that Ker(s) ≠ 0. Since M is uniform, Ker(s) e⊂  M. Let t ∈ S.   

To show that Ker(s)   Ker(1– ts) = 0. Let x ∈ Ker(s)   Ker(1– ts). Then x ∈ Ker(s) and x ∈ 

Ker(1– ts) so s(x) = 0 and (1– ts)(x) = 0. Hence 1(x) = t(s(x)) so x = 1(x) = t(s(x)) = t(0) = 0. Since 

Ker(s) 
e⊂  M, Ker(1– ts) = 0. Then Ker(1– ts) = Ker(1M). Thus S = S(1– ts) by Theorem 3.2.2. Since 

1 ∈ S, 1 ∈ S(1– ts). Write 1 = g(1– ts) for some g ∈ S. This shows that s ∈ J(S).            � 
 

 Following [9], a ring R is called semiregular if R/J(R) is regular and idempotent can be  

lifted modulo J(R), equivalently, R is semiregular if and only if each element a ∈ R, there exists    

e2
 = e ∈ Ra such that a(1 – e) ∈ J(R). 

 

3.2.9. Theorem.  For a pseudo quasi-principally injective module M, if S is semiregular, 

then for every s ∈ S \ J(S), there exists a nonzero idempotent α ∈ Ss such that Ker(s) ⊂ Ker(α) 

and Ker(s(1–α)) ≠ 0. 
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Proof.  Let s ∈ S \ J(S). Since S is a semiregular ring, there exists α2
 = α ∈ Ss such that               

s(1 – α) ∈ J(S). Then α2
 = α = fs for some f ∈ S. If α = 0, then s = s(1– 0) = s(1–α) ∈ J(S), a 

contradiction. This shows that α ≠ 0. Let x ∈ Ker(s). Then s(x) = 0. Hence α(x) = fs(x) = f(s(x)) = 

f(0) = 0, so x ∈ Ker(α). This shows that Ker(s) ⊂ Ker(α). Suppose that Ker(s(1–α)) = 0. Then 

Ker(s(1–α)) = Ker(1M). Since M is PQ-P-injective module, by Theorem 3.2.2, Ss(1–α) = S. We 

have 1M ∈ S, so gs(1–α) = 1M for some g ∈ S. Then gs – gsα = 1M. Hence (gs – gsα)α = 1Mα, so 

gsα – gsα2
 = α. Thus gsα – gsα2

 = gsα – gsα = 0. It follows that α = 0, a contradiction. This 

shows that Ker(s(1–α)) ≠ 0.                         � 
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