QUASI-SMALL PRINCIPALLY-INJECTIVE MODULES

PASSAKORN YORDSORN

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE
PROGRAM IN MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY
RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI
ACADEMIC YEAR 2012
COPYRIGHT OF RAJAMANGALA UNIVERSITY

OF TECHNOLOGY THANYABURI



QUASI-SMALL PRINCIPALLY-INJECTIVE MODULES

PASSAKORN YORDSORN

A THESIS SUBMITTED IN PARTIAL FULLFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE
PROGRAM IN MATHEMATICS FACULTY OF SCIENCE AND TECHNOLOGY
RAJAMANGALA UNIVERSITY OF TECHNOLOGY THANYABURI
ACADEMIC YEAR 2012
COPYRIGHT OF RAJAMANGALA UNIVERSITY

OF TECHNOLOGY THANYABURI



Thesis Title Quasi-Small Principally-Injective Modules

Name - Surname Mr. Passakorn Yordsorn

Program Mathematics

Thesis Advisor Assistant Professor Sarun Wongwai, Ph.D.
Academic Year 2012

THESIS COMMITTEE

.- ~ - {
JnNg A Uranm R ¥y f};;. O~ Chairman

(Associate Professor Virat Chansiriratana, M.Ed.)

N /
,”\:””w\gcﬂf}k“”[ﬁc/ Committee

(&)

(Assistant Professor Nangnouy Songkampol, M.Ed.)

LA SR BT . Committee

........................... (S - ... Committee

(Assistant Professor Sarun Wongwai, Ph.D.)

Approved by the Faculty of Science and Technology, Rajamangala University of

Technology Thanyaburi in Partial Fulfillment of the Requirements for the Master’s Degree

! "Dy l)“ . o /
@ 1 MMA2IN0R YOVARNA!

............. Lo, <eereeeemeee Dean of the Faculty of Science and Technology

(Assistant Professor Sirikhae Pongswat, Ph.D.)

Date...10...Month...March...Years...2013...



Thesis Title Quasi-Small Principally-Injective Modules

Name - Surname Mr. Passakorn Yordsorn
Program Mathematics
Thesis Advisor Assistant Professor Sarun Wongwai, Ph.D.
Academic Year 2012
ABSTRACT

The purposes of this thesis are to (1) study properties and characterizations of quasi-small
principally-injective modules, (2) study properties and characterizations of endomorphism rings of
quasi-small principally-injective modules, (3) extend the concepts of quasi-principally injective modules,
and (4) find some relations between quasi-principally injective modules, quasi-small principally-injective
modules and projective modules.

Let R be a ring. A right R-module M is called principally injective if every R-homomorphism
from a principal right ideal of R to M can be extended to an R-homomorphism from R to M.
A right R-module N is called M-principally injective if every R-homomorphism from an M-cyclic
submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called
quasi-principally injective if it is M-principally injective. The notion of quasi-principally injective
modules is extended to be quasi-small principally-injective modules. A right R-module N is called
M-small principally-injective if every R-homomorphism from an M-cyclic small submodule of M to N
can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-small
principally-injective if it is M-small principally-injective.

The results are as follows. (1) The following conditions are equivalent for a projective module
M : (a) every M-cyclic small submodule of M is projective; (b) every factor module of an M-small

principally-injective module is M-small principally-injective; (c) every factor module of an injective
R-module is M-small principally-injective. (2) Let M be a right R-module and S = End (M ). Then the
following conditions are equivalent: (a) M is quasi-small principally-injective; (b) L (Ker(s)) = Ss
for all s € S with s(M) K M, (c) Ker(s) < Ker(t), where s, t € S with s(M) K M, implies St — Ss;
(d) [g(Ker(s) N Im(2)) = Ig(Im(t)) + Ss for all s, t € S with s(M) < M. (3) Let M be a principal

module which is a self generator. If M is quasi-small principally-injective, then: (a) if s§ @ ¢S
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and Ss @ St are both direct, s, ¢ € J(S), then L(s) +1,,(1) = S; (b) lSrM(SS) = Ss for any s € J(S).
(4) Let M be a quasi-small principally-injective module, s, ¢ € S and s(M). K M: (a) if s(M) embeds
in #(M), then Ss is an image of St; (b) if #(M) is an image of s(M), then St embeds in Ss;

(c) if s(M) = t(M), then Ss = St.

Keywords: quasi principally-injective  modules, quasi-small principally-injective  modules,

endomorphism rings
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CHAPTER 1

INTRODUCTION

In modules and rings theory research field, there are three methods for doing the research.
Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings.
Secondly, to study about the modules over special rings. Thirdly, to study about ring R by way of

the categories of R-modules. Many mathematicians have concentrated on these methods.

1.1 Background and Statement of the Problems

Many generalizations of the injectivity were obtained, e.g., principally injectivity
and mininjectivity. In [2], V. Camillo introduced the definition of principally injective modules
by calling a right R-module M is principally injective if every R-homomorphism from a principal
right ideal of R to M can be extended to an R-homomorphism from R to M.

In [7], Nicholson and Yousif studied to the structure of principally injective rings
and gave some applications of these rings. A ring R is called right principally injective if every
R-homomorphism from a principal right ideal of R to R can be extended to an R-homomorphism
from R to R.

In [12], L.V. Thuyet, and T.C. Quynh introduced the definitions of a small principally
module. A right R-module M is called small principally injective if every R-homomorphism
from a small and principal right ideal aR to M can be extended to an R-homomorphism from R to M.

In [10], N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai introduced
the definitions of quasi principally injective modules. A right R-module M is called
quasi-principally injective if every R-homomorphism from an M-cyclic submodule of M to M

can be extended to M.

1.2 Purpose of the Study
In this thesis, we have the purposes of study which are to extend concept of the previous

works and to generalize new concepts which are :



1.2.1 To extend the concept of principally injective modules [2].
1.2.2 To generalize the concept of quasi principally injective modules [10].
1.2.3 To establish and extend some new concepts which are dual to quasi principally-

injective modules [10] and quasi-small principally-injective modules[19].

1.3 Research Questions and Hypothesis

We are interested in seeing to extend the characterizations and properties which remain
valid from these previous concepts which can be extended from principally injective modules [2],
principally-injective rings [7], mininjective modules (8], principally quasi-injective modules [9],
small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].

In this research, we introduce the definition of quasi-small principally-injective modules
and give characterizations and properties of these modules which are extended from the previous
works. By let M be a right R-module. A right R-module N is called M-small principally injective if
every R-homomorphism from an M-cyclic small submodule of M to N can be extended to an
R-homomorphism from M to N. Dually, a right R-module M is called quasi-small P-injective
if it is M-small P-injective. Many of results in this research are extended from principally injective
rings [7], mininjective rings [8], small principally quasi-injective modules [18] and quasi-small

principally-injective modules [19].

1.4 Theoretical Perspective

In this thesis, we use many of the fundamental theories which are concerned to the rings
and modules research. By the concerned theories are :

1.4.1 The fundamental of algebra theories.

1.4.2 The basic properties of rings and modules theory.

1.5 Delimitations and Limitations of the Study
For this thesis, we have the scopes and the limitations of studying which are concerned to
the previous works which are:

1.5.1 To extend the concept of M-small P-injective modules.



1.5.2 To extend the concept of quasi-small P-injective modules.

1.5.3 To characterize the concept in 1.5.2 and find some new properties.

1.6 Significance of the Study
The advantage of education and studying in this research, we can improve and develop

the concepts and knowledge in the algebra and modules research field.



CHAPTER 2

LITERATURE REVIEW

In this chapter we give notations, definitions and fundamental theories of the modules

and rings theory which are used in this thesis.

2.1 Rings, Modules, Submodules and Endomorphism Rings
This section is assembled summary of various notations, terminology and some

background theories which are concerned and used for this thesis.

2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary operations

+ and -, called addition and multiplication (also called product), respectively, such that

(1) (R, +) is an additive abelian group.

(2) (R, ) is a multiplicative semigroup.

(3) Multiplication is distributive (on both sides) over addition; that is, for all
a,b,c € R, a*(b+c)=ab+ ac and (a + b)c=ac + bec.

The two distributive laws are respectively called the left distributive law and the
right distributive law.

A commutative ring is a ring R in which multiplication is commutative; i.e. if a-b =
b-a for all a, b € R. If a ring is not commutative it is called noncommutative.

A ring with unity is a ring R in which the multiplicative semigroup (R, +) has an
identity element; that is, there exists e € R such that ea = a = ae for all a € R. The element e is
called unity or the identity element of R. Generally, the unity or identity element is denoted by 1.

In this thesis, R will be an associative ring with identity.

2.1.2 Definition. [14] A nonempty subset / of aring R is called an ideal of R if
(1) a,b e Iimpliesa—b € 1.

(2) aelandr e Rimply ar € Iand ra € 1.



2.1.3 Definition. [13] A subgroup 7 of (R, +) is called a left ideal of R if Rl — |, and

arightideal if IR C I

2.1.4 Definition. [14] A right ideal I of a ring R is called principal if I = aR for some

a € R.

2.1.5 Definition. [14] Let R be a ring, M an additive abelian group and (m, r)— mr,
a mapping of M X R into M such that
(1) mreM
() (m,+ my)r=m;r+myur

(3) m(r,+r)) =mr+mr,

4) (mr)r, = m(rr,)

B) ml=m

for all r, r,r, € Rand m, m; , m, € M. Then M is called a right R-module, often written as M Iy

Often mr is called the scalar multiplication or just multiplication of m by r on

right. We define left R-module similarly.

2.1.6 Definition. [13] Let M be a right R-module. A subgroup N of (M, +) is called a
submodule of M if N is closed under multiplication with elements in R, that is n» € N for alln € N,
r € R. Then N is also a right R-module by the operations induced from M :

NXR — N, (n,r)nr,foralln € N,r € R.

2.1.7 Proposition. 4 subset N of an R-module M is a submodule of M if and only if
(1) oeN.
2) n,n, € Nimpliesn — n, € N.
(3) n € N, r € R implies nr € N.

Proof. See[15, Lemma 5.3]. []



2.1.8 Definition. [1] Let M be a right R-module and let K be a submodule of M. Then
the set of cosets
MIK={x+K|xeM}
is a right R-module relative to the addition and scalar multiplication defined via

(x+K)+(y+K)=(x+y)+K and (x+K)r=xr+K.

The additive identity and inverses are given by

K=0+K and —-(x+K)=-x+K.

The module M/K is called (the right R-factor module of ) M modulo K or

the factor module of M by K.

2.1.9 Definition. [13] Let M and N be right R-modules. A function /: M — N is called
an ( R-module ) homomorphism if for all m, m;,m, € Mand r € R
SCmyr+my) =f(m)r+f(m,)).
Equivalently, f(m, +m,)=f(m,)+f(m,) and f(mr)=f(m)r.
The set of R-homomorphisms of M in N is denoted by Hom (M, N ). In particular,
with this addition and the composition of mappings, Hom(M,M ) = End (M) becomes a ring,

called the endomorphism ring of M and f € End (M) is called an R-endomorphism. [13, 6.4]

2.1.10 Definition. [1] Let /: M — N be an R-homomorphism. Then
(1) 1 is called R-monomorphism (or R-monic) if f is injective (one-to-one).
(2) f is called R-epimorphism (or R-epic) if " is surjective (onto).

(3) f is called R-isomorphism if f is bijective (one-to-one and onto).

Two modules M and N are said to be R-isomorphic, abbreviated M = N in case

there is an R-isomorphism f: M — N.

2.1.11 Definition. [1] Let K be a submodule of M. Then the mapping 77, : M — M/K

from M onto the factor module M/K defined by



N (x)=x+KeMK (xeM)

is seen to be an R-epimorphism with kernel K. We call 7], the natural epimorphism of M onto MIK.

2.1.12 Definition. [1] Let 4 < B. Then the function 1 = 1 4 A — B defined by

1=(1, ,):a~aforall a € 4 is called the inclusion map of A in B. Note that if 4 — Band A C C,

B| 4

andif B#C, then1, _ ,#1 C.OfcourselA:lAC

AC A

2.1.13 Definition. [14] Let M and N be right R-modules and let f: M — N be an
R-homomorphism. Then the set
Ker(f) ={ x € M| f(x)=0 } is called the kernel of f
and
f(M) = {f (x) eN | xXeEM } is called the homomorphic image (or simply image)
of M under fand is denoted by Im(f).

2.1.14 Proposition. Let M and N be right R-modules and let f: M — N be an
R-homomorphism. Then
(1) Ker(f) is a submodule of M.
2) Im(f)=f(M) is a submodule of N.

Proof. See[13, 6.5]. 0J

2.1.15 Proposition. Let M and N be right R-modules and let f: M — N be an

R-isomorphism. Then the inverse mapping f N> Misan R-isomorphism.

Proof. See [14, Chapter 14, 3]. O

2.1.16 Theorem. Let M, M’, N and N’ be right R-modules and let f : M — N
be an R-homomorphism.
(1) If g : M — M’ is an epimorphism with Ker(g) C Ker(f), then there exists

a unique homomorphism h : M" — N such that

f=hg.



Moreover, Ker(h) = g(Ker(f)) and Im(h) = Im(f), so that h is monic if and only if Ker(g) = Ker(f)
and h is epic if and only if f is epic.
(2) If g : N"— N is a monomorphism with Im(f) C Im(g), then there exists
a unique homomorphism h : M — N such that
f=gh.
Moreover, Ker(h) = Ker(f) and Im(h) = g° (Im(f)), so that h is monic if and only if f is monic
and h is epic if and only if Im(g) = Im(f).

N M% N
\-\\ h |

S ! \\\ ) v

\\ , ”// 8
M 2 > M N’

Ker(g) C Ker(f)
(1) ()
Proof. See [1, Chapter 1, 46]. O

2.1.17 Definition. [20] A submodule K of the module M is fully invariant in M if

f(K) C K for every endomorphism f of M.

2.2 Essential and Superfluous Submodules
In this section, we give the definitions of essential and superfluous submodules and some

theories which are used in this thesis.

2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M,

abbreviated K C€ M, if for every submodule L of M, K N L = 0 implies L = 0.

2.2.2 Definition. [13] A submodule K of M is called superfluous (or small) in M,
abbreviated K < M, if for every submodule L of M, K + L = M implies L = M.



2.2.3 Proposition. Let M be a right R-module with submodules K C N C M and

HC M. Then
(1) N& M ifand only if K< M and N/K < M/K;
Q) H+ KK M ifand only if H<LK M and K <K M.
Proof. See [1, Proposition 5.17]. O

2.2.4 Proposition. [f K < M and f: M — N is a homomorphism then f(K) < N.
In particular, if K < M C N then K < N.

Proof. See [1, Proposition 5.18]. O

2.3 Annihilators and Singular Modules
In this section, we give the definitions of annihilators, singular modules and some

theories which are used in this thesis.

2.3.1 Definition. [1] Let M be a right (resp. left) R-module. For each X C M, the right

(resp. left) annihilator of X in R is defined by
rR(X)= { re€R |xr=0,VxEX} (resp.lR(X)= { r€R|rx=0,Vx€X}).

For a singleton {x} , we usually abbreviated to 7,(x) (resp. [,(x)).

2.3.2 Proposition. Let M be a right R-module, let X and Y be subsets of M and let A
and B be subsets of R. Then

(1) r(X) is a right ideal of R.
2) X C Y imples rR(Y) < rR(X).
(3) 4 < B imples 1, (B) < I,,(4).

4 X C [, r(X) and 4 Cryl), (A4).

Proof. See [1, Proposition 2.14 and Proposition 2.15]. 0
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2.3.3 Proposition. Let M and N be right R-modules and let f : M — N be a
homomorphism. If Nis an essential submodule of N, then f _I(N ") is an essential submodule of M.

Proof. See [4, Lemma 5.8(a)]. O

2.3.4 Proposition. Let M be a right R-module over an arbitrary ring R, the set

Z(M) = { X € M| rR(x) is essential in R }
is a submodule of M.

Proof. See [4, Lemma 5.9]. U]

2.3.5 Definition. [4] The submodule Z(M) = { xeM | rR(x) is essential in R, }

is called the singular submodule of M. The module M is called a singular module if Z(M) = M.

The module M is called a nonsingular module if Z(M) = 0.

2.4 Maximal and Minimal Submodules
In this section, we give the definitions and some properties of maximal submodules,

minimal (or simple) submodules and some theories which are used in this thesis.

2.4.1 Definition. [13] A right R-module M is called simple if M # 0 and M has no

submodules except 0 and M.

2.4.2 Definition. [13] A submodule K of M is called maximal submodule of M if
K # M and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if,

K# M and for every 4 C M, K C A implies K = 4.

2.4.3 Definition. [13] A submodule N of M is called minimal (or simple) submodule
of M if N # 0 and it has no non zero proper submodules of M, i.e. N is minimal (or simple) in M

if N# 0 and for every nonzero submodules 4 of M, 4 C N implies A = N.

2.4.4 Proposition. Let M and N be right R-modules. If f: M — N is an epimorphism

with Ker () = K, then there is a unique isomorphism O : M/K — N such that & (m+K) = f(m)
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forallm eM.

Proof. See [1, Corollary 3.7]. O

2.4.5 Proposition. Let K be a submodule of M. A factor module M/K is simple if and
only if K is a maximal submodule of M.

Proof. See [1, Corollary 2.10]. 0J

2.5 Injective and Projective Modules
In this section, we give the definitions of the injective modules, injective testing,

projective modules and some theories which are used in this thesis.

2.5.1 Definition. [1] Let M be a right R-module. A right R-module U is called injective
relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism
@ : K — U can be extended to a homomorphism & : M — U.

A right R-module U is said to be injective if it is M-injective for every right

R-module M.

2.5.2 Proposition. The following statements about a right R-module U are equivalent :
(1) U is injective;
(2) U is injective relative to R,
(3) For every right ideal I C R, and every homomorphism h : I — U there exists
an x € U such that h is left multiplicative by x
ha) =xa foralla € L

Proof. See[l, 18.3, Baer’s Criterion]. O

2.5.3 Definition. [1] Let M be a right R-module. A right R-module U is called projective
relative to M (or U is M-projective) if for every N, every epimorphism g : M,— N, for every
homomorphism }: Up,— N, can be lifted to an R-homomorphism ]; :U—> M.

A right R-module U is said to be projective if it is projective for every right

R-module M.
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2.5.4 Proposition. Every right (resp. left) R-module can be embedded in an injective
right (resp. left) R-module.

Proof. See [1, Proposition 18.6]. O

2.6 Direct Summands and Product of Modules

Given two modules M, and M, we can construct their Cartesian product M, X M,.

The structure of this product module is then determined “co-ordinatewise” from the factors

M, x M,. For this section we give the definitions of direct summand, the projection and the

injection maps, product of modules and some theories which are used in this thesis.

2.6.1 Definition. [1] Let M be a right R-module. A submodule X of M is called a direct
summand of M if there is a submodule Y of M such that X N Y =0 and X + Y = M. We write

M=X® Y;such that Y is also a direct summand.

2.6.2 Definition. [1] Let M, and M, be R-modules. Then with their products module
M, x M, are associated the natural injections and projections
(Dj:Mj—>M1><M2 and 76.:M1><M2—>Mj

(j=1,2), are defined by

@,(x) = (x, 0), ®,(x,) = (0, x,)
and
7Z'I(x1,x2) r 72'2(x1,x2) 7,
Moreover, we have
7Z'1§01 :1Ml and 7[2§02:1M2'

2.6.3 Definition. [1] Let 4 be a direct summand of M with complementary direct

summand B, so M =A4 @ B. Then
T, ia+bra (aed,beB)

defines an epimorphism 77, : M — A is called the projection of M on A along B.
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2.6.4 Definition. [13] Let {Al. ,iel } be a family of objects in the category C.
An object P in Cwith morphisms { TP — A } is called the product of the family {Al., iel }
if :
For every family of morphisms { fii X — 4, } in the category C, there is a
unique morphism f: X — P with 77,/ = f foralli € L

For the object P, we usually write I_IIA[ , H [Ai or HA,- .Ifall Al. are equal to
i€

A, then we put Hin =4

The morphism 77, are called the i-projections of the product. The definition can be

described by the following commutative diagram :

HA%A

N

2.6.5 Definition. [13] Let { Ml. iel } be a family of R-modules and ( HMZ. , T ) the
iel

product of the Ml. .Form,n € HMI. , 7 € R, using
iel

T(m+n)=7(m)+ 7 (n) and 7(mr)= 7T (m)r,

a right R-module structure is defined on HM such that the /7. are homomorphisms. With this
iel

structure ( HM > T ) is the product of the { Ml. i€l } in R-module.
iel

2.6.6 Proposition. Properties:
m I {fl IN—M, ,iel } is a family of morphisms, then we get the map

f:N—> HMZ. such that nr—>(fl.(n))l.€1

iel

and Ker (f) = ﬂ, Ker(f;) since f(n) =0 if and only if f(n) =0 for alli € I.
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(2) Foreveryj € I, we have a canonical embedding

&M — HM such that mr—>(m5l)l€1,

iel

mEM

with & 7T.= 1, ,i.e. 7T is a retraction and & a coretraction.
7T J 7 i

This construction can be extended to larger subsets of I : For a subset A C I

we_form the product 1M . and a family of homomorphisms

i€A
T. forj €A,
J
: [1m, — M, 1=
ied J 0 forjel—A.
Then there is a unique homomorphism
71']. for j €A,

HM —>HM with 6‘72'—
i€ i€l 0 forjel—A.

The universal property of [Tm ; yields a homomorphism
i€A

g 1M, — T1m, with 76,7, = T, for j € 1.
NS,/ i€A

Together this implies €,TT, 7Z' ETT 7Z'f0r allj € I, and by the properties of the product HM
i€A

wegeté‘Aﬂ'A:lMA.

Proof. See [13, 9.3, Properties (1), (2)] O

2.6.7 Definition. [1] We say (M) ,_a is independent in case for each € A

M, (3 M,)=0.
P*a

If the submodules (M) a of M are independent, we say that the sum > M, is direct
A

and write
@
Z a”

2.6.8 Proposition. [1] Ler (M) acA be an indexed set of submodules of a module M

with inclusion maps (ia)aeA’ Then the following are equivalent:

(a) .M, is the internal direct sum of (M )
A

achA>



15

()i :(?ia :(?Ma — M is monic;
(© (M) weA 18 independent,
@ (M,) weF 1S independent for every finite subset F C A;
(e) For every pair B,CC A,if BN C= O, then
(EMp)N (ZM,) =0

Proof. See [1, Proposition 6.10]. O

2.7 Generated and Cogenerated Classes
In this section, we give some definitions and theories of the generated and cogenerated

classes which are concerned in this thesis.

2.7.1 Definition. [13] A subset X of a right R-module M is called a generating set of M
if XR =M. We also say that X generates M or M is generated by X. If there is a finite generating set

in M, then M is called finitely generated.

2.7.2 Definition. [1] Let U be a class of right R-modules. A module M is ( finitely)
generated by U (or U ( finitely) generates M ) if there exists an epimorphism

DU - M
iel

for some (finite) set / and Ul € U foreveryi e L

If U = {U } is a singleton, then we say that M is (finitely) generated by U
or (finitely ) U-generates; this means that there exists an epimorphism

v - M

for some (finite) set /.

2.7.3 Proposition. If a module M has a generating set L C M, then there exists an
epimorphism

RY > M

Moreover, M is finitely R-generated if and only if M is finitely generated.

Proof. See[1, Theorem 8.1]. N
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2.7.4 Definition. [17] Let M be a right R-module. A submodule N of M is said to be

an M-cyclic submodule of M if it is the image of an endomorphism of M.

2.7.5 Definition. [1] Let U be a class of right R-modules. A module M is ( finitely)
cogenerated by U, (or U (finitely) cogenerates M) if there exists a monomorphism

M— HUi
iel

for some (finite) set 7 and U, € U for every i € L.

IfU= {U } is a singleton, then we say that a module M is ( finitely) cogenerated by U
or (finitely) U-cogenerates; this means that there exists a monomorphism

M—-U!

for some (finite) set /.

2.8 The Trace and Reject
In this section, we give some definitions and theories of the trace and reject which are

concerned in this thesis.

2.8.1 Definition. [1] Let U be a class of right R-modules. The trace of U in M and the

reject of Uin M are defined by
Tr,, (W) = Z{ Im(h) | h:U— M forsome U el }
and

RejM(U):ﬂ{Ker(h) | h: M — U for some UE°U&}.

IfU = { U } is a singleton, then the trace of Uin M and the reject of Uin M are in the form
Tr,, (U) =24 Im(h) | h € Homy(U, M) }
and

Rej,, (U)=N{ Ker(h) | h € Homy(M, U) }.

2.8.2 Proposition. Let U be a class of right R-modules and let M be a right R-module.
Then
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(1) Tr,, (W) is the unique largest submodule L of M generated by U,

(2) Rej,, (W) is the unique smallest submodule K of M such that MIK s
cogenerated by .

Proof. See [1, Proposition 8.12]. O

2.9 Socle and Radical of Modules
In this section, we give some definitions and theories of the socle and radical of modules

which are used in this thesis.

2.9.1 Definition. [13] Let M be a right R-module. The socle of M, Soc(M), we denote

the sum of all simple submodules of M. If there are no simple submodules in M we put Soc(M) = 0.

2.9.2 Definition. [13] Let M be a right R-module. The radical of M, Rad( M), we denote
the intersection of all maximal submodules of M. If M has no maximal submodules we set

Rad(M) =M.

2.9.3 Proposition. Let & be the class of simple R-modules and let M be an R-module.

Then
Soc(M) = Tr,, (&)
= ﬂ{ LCM | L isessentialinM}.
Proof. See[13,21.1]. 0J
2.9.4 Proposition. Let & be the class of simple R-modules and let M be an R-module.
Then

Rad(M) = Rej,,(E)
= Z{ LCM | L is superfluous inM}.

Proof. See[13,21.5]. 0J
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2.9.5 Proposition. Let M be a right R-module. A right R-module M is finitely generated
if and only if Rad(M) < M and M/Rad (M) is finitely generated.

Proof. See [13, 21.6, (4)]. U

2.9.6 Proposition. Let M be a right R-module. Then Soc(M) C¢ M if and only if every
non-zero submodule of M contains a minimal submodule.

Proof. See [1, Corollary 9.10]. O

2.10 The Radical of a Ring
In this section, we give some definitions and theories of the radical of a ring which are

used in this thesis.

2.10.1 Definition. [1] Let R be a ring. The radical Rad(RR) of R, is an (two side) ideal

of R. This ideal of R is called the (Jacobson) radical of R, and we usually abbreviated by

J(R) = Rad(Ry).

Since R = 1R is finite generated, J(R) K R. If a € J(R), then aR < J(R) < R so
aR < R. If aR < R, then aR < J(R) and so a € aR < J(R). This shows that a € J(R)

if and only if aR < R.

2.10.2 Definition. [1] Let R be a ring. An element x € R is called right (left)
quasi-regular if 1 —x has a right (resp. left ) inverse in R.

An element x € R is called quasi-regular if it is right and left quasi-regular.

A subset of R is said to be (right, left ) quasi-regular if every element in it has

the corresponding property.

2.10.3 Proposition. Given a ring R for each of the following subsets of R is equal to the
radical J(R) of R.

(J)) The intersection of all maximal right (left) ideals of R;

(J,) The intersection of all right (left) primitive ideals of R;
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(J3) { X€E€R | rxs is quasi-regular for all r, s € R };

(J) { x€R | rx is quasi-regular for all v € R };

(J) { X€E€R | xs is quasi-regular for all s € R };

(Jg) The union of all the quasi-regular right (left ) ideals of R;
(J7) The union of all the quasi-regular ideals of R;

(Jg) The unique largest superfluous right (left) ideals of R;

Moreover, (J,), ( J), (J), (Jy) and (J,) also describe the radical J(R) if “quasi-regular” is
replaced by “right quasi-regular” or by “left quasi-regular”.

Proof. See[1, Theorem 15.3]. 0J

2.10.4 Proposition. Let R be a ring with radical J(R). Then for every right R-module

J(R)M,, C Rad(My).

If R is semisimple modulo its radical, then for every right R-module,
J(R)M, = Rad(Mp)

and MJJ( R)MR is semisimple.

Proof. See [1, Corollary 15.18]. 0



CHAPTER 3

RESEARCH RESULT

In this chapter, we present the results of M-small P-injective modules and quasi-small

P-injective modules.

3.1 M-small P-injective Modules

3.1.1 Definition. Let M be a right R-module. A right R-module N is called
M-small principally injective (briefly, M-small P-injective) if every R-homomorphism from
M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N.
Equivalently, for any endomorphism s of M with s(M) << M , every R-homomorphism from s(M)

to NV can be extended to an R-homomorphism from M to N.

3.1.2 Lemma. Let M and N be right R-modules. Then N is M-small P-injective

if and only if for each s € S = EndR(M) with S(M) K M,
Hom (M, N)s = {f e Hom (M, N) : f(Ker(s)) = 0.

Proof. (=) Assume that N is M-small P-injective. Let s € § = EndR(M) and s(M) K M.
To show that Hom (M, N)s = {f e Hom (M, N) : f(Ker(s)) = 0}. (<) Let gs € Hom (M, N)s.
Since s : M — Mand g: M — N, gs : M — N. Let x € Ker(s). Then gs(x) = g(s(x)) = g(0) = 0.
Hence gs € {f € Hom(M,N) : f(Ker(s)) = 0}. This shows that Hom(M,N)s < {f €
Hom (M, N) :flKer(s))=0}. (D) Letfe {fe Hom (M, N) : fiKer(s)) = 0}. Let x € Ker(s).
Since flKer(s)) = 0, fix) = 0. Then Ker(s) C Ker(f). By Proposition 2.1.16, there exists an

R-homomorphism ¢ : s(M) — N such that f = @s. Since s(M) <« M, there exists an

R-homomorphism (5 : M — N such that ¢ = gBl where 1 : s(M) — M is the inclusion map.
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Hence f= @5 = ((ﬁl)s = és € Homy(M, N)s.

(&) Let s € S = End (M) with s(M) « M and ¢ : s(M) — N be an
R-homomorphism. Then ¢@s € HomR(M,N ). Let x € Ker(s). Then @s(x) = ¢@0) = 0.
Therefore @s(Ker(s)) = 0. Then by assumption, @s € HomR(M,N )s. Hence @s = us, for some

U € Hom R(M, N). This shows that N is M-small P-injective. UJ

3.1.3 Example. Let R = (E Ej where F is a field, M, = R, and N, = ('; ';j

Then N is M-small P-injective.

Proof. WehaveonlyX1=(8 E),X2=(8 2),)(3:(; EJ,X“:(S E),X5=(8 8), and

X, = ('(:) Ej are nonzero submodules of M, and we see that only X, = (8 E) is only a small
submodule of M because for every X, € M, 2 <i <5, X, # M then X, + X, # M.
Now we show that X, is an M-cyclic submodule of M. Define s : ('(:) Ej — (8 ';)

by S[{a b]j — (8 g) for every (g Sj IS (E E) To show that s is well-defined.

Let (ai blj, (az sz S (F Fj such that (al bl) = (aZ b2].Then S((al blj] = (0 blj =
0 ¢ o ¢ 0F o HNS 0 g 00

0b)_g [az sz . To show that § is an R-homomorphism. Let e , |2 bl (F F
0 o 0 ¢ 0 ¢ 0 F

and (% 2)er = (F F) Then s [al bl] o [az sz | I8 (alrl alr2+blr3) N
0 1, 0 F OO 0 G 0 ¢

[az bz] = ¢ ay+ay aylp+birs+h, — [0 ar+bryby) _ (0 arn+bry) , (0 b,

0 ¢ 0 Cf3+Cy 0 0 0o o0 00

S((am a1r2+b1r3)J + S((az szj = S[(al bl][rl rz]] + S[(az bzn. We must show that s is an
0 Cl3 0 ¢ 0 q)\O0 r3 0 ¢

R-epimorphism. Let (0 X)E (0 F) = X,. Then there exists (0 X)e (F F) such that
00 00 00 0 F

s[(© X)) =[O *). Let @:X, = N be an R-homomorphism. Since 01 € X, there exists
00 00 00

R R S (e (A
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o389 - (5 5)EY - () me (55) - (1) momo

Define (5: M — N by (ﬂ[[ 312]] _ [Xlzall Xng‘lzJ for every (3(1)1 aleEM.

0 &y 0 8
To show that @ is well-defined. Let [aél ::j [b(l)l Elzﬂ € M such that [8(1)1 aglzj = [bél Ezlj
41 81p)| _ (%2811 XiRig| _ [ Xy XgPao| _ (|0 b o
Then (0 (( 0 azzj} [ 0 0 ] [ 0 0 } () ([ 0 by, ) To show that @ is an
R-homomorphism.  Let [aﬂ 312] by B, € FF and SR € R
’ 0 a,) 0 b, 0 F 0, ’
~ (3 a1, b, blz} A [[allrl af 2+a1£j [bu blZ]
Th + = +
we [[ 0 azzIO r3J [O B 710 %23 0 by
(ﬁ (a11r1+b11 af srasf 4b 13 _ Xo(@y 1+ b)) Xy{a b 5+b o) _
0 ayofa+by, 0 0
(XlzallrlJr X1P11 X18 b & 3 3 (X12allr XA 253) n (X12b11 X1 P 22) -
0 0 0 0

ol J 4 R R R ()

@[[aél Z:EB ((bél Jf j To show that @1 = ¢. Let (8 )(()] € X,
men 1 EJJ Sl - o9 - (6 - (5 )i -
(/{[g ;]](?) S) = (p[[g (1) X] - (( g)] This shows that ¢ is an extension of .

Thus N is M-small P-injective. U

3.1.4 Proposition. Let M be a right R-modules and {N.,i € I} be a family of right

R-modules. Then the direct product HNZ. is M-small P-injective if and only if each N, is
i€l

M-small P-injective.

Proof. (=) Let {N,,ie€l} be a family of right R-modules and the direct product

q N, is M-small P-injective. Let i€/, we must show that N, is M-small P-injective.
ie

Let s€ S = End (M) with s(M)<K M and let @:s(M)— N, be an R-homomorphism.

Let 7z, and @,, for each i € I, be the i-th projection map and the i-th injection map, respectively.
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Since q N, is M-small P-injective, there exists an R-homomorphism q;: M —[IN ; such that
ie i€l

(ﬁl = @.¢ where 1: (M) — M is the inclusion map. Thus 7[1.(21 = 7., so by Definition 2.6.2,
72;.(2)1 = @. Thus 72;.(2) is an extension of .

(<) Let N, be M-small P-injective for each i €/l To show that
ig N, is M-small P-injective. Let s € S = End (M) with s(M) < M and let ¢ : s(M) _)ig N,
be an R-homomorphism. Let 7. be the i-th projection map. Since, for each i, N; is M-small
P-injective, there exists an R-homomorphism @ : M — N, such that 7 =y

where 1:5(M) — M is the inclusion map. Then by Definition 2.6.5 and Proposition 2.6.6,

we obtain (ﬁ P M - il;[[Ni such that 7[1(5 = ¢« for each i € I. Then 7@(51 = a1,
o LY =l = 72;.(2)1. Hence 7z.¢ = 72'1.¢A)l for each i € I. Therefore @ = qu)l. [

n
3.1.5 Lemma. Let M and N, (1 <i <n) be right R-modules. Then _@1Nl- is M-small
1=

P-injective if and only if N is M-small P-injective for each i=1,2,3, ..., n.

Proof. (=) Leti € {1,2,3, ..., n}. To show that N, is M-small P-injective. Let s € S = End, (M)
with s(M) << M and let @ : s(M) — N; be an R-homomorphism. Let 7z; and . be the i-th projection
map and the i-th injection map, respectively. Since iélN ; 18 M-small P-injective, there exists an
R-homomorphism (5 M —>iC'Z31N ; such that (?)l = @, where 1 : s(M) — M is the inclusion map.
Thus 72;.(2)1 = .., so by Definition 2.6.2, 72;.(?)1 = @. Thus 7[1.(?) is an extension of .

(<) We must show that é N,is M-small P-injective. Let s € S = End (M)

i=1

n
with s(M) K M and let o : s(M) — @lN ; be an R-homomorphism. Since for each
=
ied{l, 2,3, .., n}, N, is M-small P-injective, there exists an R-homomorphism a, M — N,
n
such that 1 = m.a where 7. is the i-th projection map from @lN ; to N.oand 1:s(M) > M
i=

A n n
is the inclusion map. Set = 1,0, + L,a, + ... + L : M — @ N, where 11N, — @ N,
i=

i=1
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for each i € {1,2, 3, ..., n} is the i-injection map. We must to show that ¢ is an extension of ¢.
Let s(m) € s(M). Then & 1(s(m)) = & (s(m)) = 1,,(s(m) + o (s(m)) + ...+ 1,0 (s(m)) =
ay(s(m)) + ay(s(m)) +...+ a (s(m)) = ay1,(s(m)) + el (s(m)) + ...+ a1, (s(m)) = m a(s(m)) +
malsm) + ...+ malsm) = (7 + 7 + ..+ z)alsm) = alstm). Then SN, is

M-small P-injective. (]

3.1.6 Lemma. Any direct summand of an M-small P-injective module is again M-small

P-injective.

Proof. Let N be an M-small P-injective module and let 4 be a direct summand of M.
To show that 4 is an M-small P-injective. Let s € S = End,(M) with s(M) & M
and let o : s(M) — A4 be an R-homomorphism. Since N is M-small P-injective, there exists an
R-homomorphism & : M — N such that Qo = &1 where 1 : s(M) — M is the inclusion map

and @ : 4 — N is the injection map. Let 7: N — A be the projection map. Then 7o = ra .

Hence by Definition 2.6.2, & = 7 1. Then 7 is an extension of . [
3.1.7 Theorem. The following conditions are equivalent for a projective module M.

(1) Every M-cyclic small submodule of M is projective.
(2) Every factor module of an M-small P-injective module is M-small P-injective.

(3) Every factor module of an injective R-module is M-small P-injective.

Proof. (1) = (2) Let N be an M-small P-injective module, X a submodule of N.
To show that N/X is an M-small P-injective. Let s € S = End (M) with s(M) K M
and let @ : s(M) — N/X be an R-homomorphism. Since s(M) is projective, there exists an
R-homomorphism ¢ : s(M) — N such that & = @ where 17: N — N/X is the natural
R-epimorphism. Since N is M-small P-injective, there exists an R-homomorphism £ : M — N
such that ¢ = f1 where 1 : s(M) — M is the inclusion map. Then a = n@ = npi.

Hence & = 1. Therefore 773 is an extension of . Thus N/X is an M-small P-injective.
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(2) = (@) Let N be an injective R-module and X be a submodule of N.
It is clear that an injective R-module is an M-small P-injective module, so N is M-small P-injective.

Then by (2), N/Xis an M-small P-injective.

3 = (1) Let sM) K M, ¥ : A — B be an R-epimorphism and
let @ : s(M) — B be an R-homomorphism. Let E be an injective R-module and
embed 4 in E by Proposition 2.5.4. Since ¥ is an R-epimorphism, by Proposition 2.4.4,
there exists an R-isomorphism o : AlKer( ¥) — B such that / = on, where n, c A — AlKer( 7)
is the natural R-epimorphism. Then by Proposition 2.1.15, we have c!': B — AlKer(y)

is an R-isomorphism, so BEA/Ker(]/) and A/Ker(}/) is a submodule of E/Ker(]/).

By assumption, there exists an R-homomorphism qB :M — E/Ker(y) such that

llo"l(o = qu)l2 where 7, : A/Ker(}/) — E/Ker(j/) and 1, : s(M) — M are the inclusion maps.

Since M is projective, there exists an R-homomorphism £ : M — E such that (Z) = np
where 7, @ E — E/Ker(y) is the natural R-epimorphism. Then (512 = n,p1,.

Hence 110"1(0 = (512 = 1n,p1,. It follows that llo’l(o = 1,p1,. To show that

pPs(M)) < A. Let s(m) € s(M). Then lla'lqo(s(m)) = mpL(sm) = n,Bs(m) =

n,(B(s(m)) = P(s(m)) + Ker(y). Hence 1,0 " @(s(m)) = o' p(s(m)) = a + Ker(y)

for some a € A4, so B(s(m)) + Ker()) = a + Ker(y). Thus p(s(m)) — a € Ker()).

It follows that B(s(m)) = (B(s(m)) — a) + a € Ker(y) + A = A. To show that ¢ = )p.
Let s(m) € s(M). Then 1,0 " p(s(m) = o o@sm) = mpLsm) = n,Bsm).
Hence 1,0 @(s(m)) = 1, B( s(m)) = B(s(m)) + Ker(}), so 1,0 "' @(s(m)) = B(s(m)) + Ker()).
Since » is an R-epimorphism, ¢(s(m)) = ¥(a) for some a € A. Thus 1,0 @(s(m)) =
1,67y (@ = o'y (@ = n@ = a + Ker(y). 1t follows that S(s(m)) + Ker(y) =

a + Ker()). Then B(s(m)) — a € Ker(y). Hence Y(f(s(m)) — a) = 0, so yB(s(m)) = y(a) =

@(s(m)). Thus yp(s(m)) = @(s(m)). This shows that f§ lifts ¢. O
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3.2 Quasi-small P-injective Modules

A right R-module M is called quasi-small P-injective if it is M-small P-injective. In this
section, we present the results of characterizations and properties of the endomorphism ring of

quasi-small P-injective modules.

3.2.1 Lemma. Let M be a right R-module and S = End(M). Then the following

conditions are equivalent

(1) M is quasi-small P-injective.
(2) 15 (Ker(s)) = Ss foralls € Swith s(M) K M.
(3) Ker(s) < Ker(1), where s, t € S with s(M) < M, implies St C Ss.

(4) IS(Ker(s)ﬂ[m(t)):ZS(Im(t))—l—SS foralls,t € Swiths(M) << M.

Proof. (1) = (2) Let s € S = End (M) with s(M) & M. (D) Let fs € Ss. To show that
fs € I, (Ker(s)). Let x € Ker(s). Then s(x) = 0, fs(x) = fiskx)) = flo) = 0.
(<) Let f € [;(Ker(s)). To show that / € Ss. Let x € Ker(s). Since flKer(s)) = 0,
fix) = 0. Then x € Ker(f). This shows that Ker(s) < Ker(f). Since s : M — s(M) is an
R-epimorphism, by Proposition 2.1.16, there exists an R-homomorphism ¢ : s(M) — M
such that f = @s. Since §(M) <K M and M is quasi-small P-injective, there exists an
R-homomorphism q;: M — M such that ¢ = ({A)l where 7 : (M) — M is the inclusion map.
Hence /= ¢s = (@1)s = @s € Ss. This shows that f € S.

(2) = (1) To show that M is quasi-small P-injective. Let s € S = End (M)
with s(M) < M and let ¢ : s(M) — M be an R-homomorphism. Then ¢@s € S.
To show that s € g (Ker(s)). Let x € Ker(s). Then s(x) = 0 so @s(x) = @(s(x)) = @(0) = 0.
This shows that @s € I (Ker(s)). Then by assumption, we have @s € Ss. Hence ¢s = (?)S
for some @ € S. To show that @ 1= @. Let s(m) € s(M). Then ¢t (s(m)) = @ (1(s(m))) =

(5 (s(m)) = (ﬁs(m) = @s(m) = @(s(m)). Then M is quasi-small P-injective.
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(2) = (3) Let s, t € S with s(M) < M and Ker(s) — Ker(t). First we show that
L (Ker(t)) < L (Ker(s)). Let g € L (Ker(t)). Then g(x) = 0 for every x € Ker(t).
To show that g € [ (Ker(s)), that is g(x) = 0 for every x € Ker(s). Let x € Ker(s).
Since Ker(s) — Ker(t), x € Ker(t). Hence g(x) = 0. Thus g € I (Ker(s)). We now show that
St < L (Ker(t)). Let st € St and let x € Ker(t). Then #(x) = 0, st(x) = s(#(x)) = s(0) = 0.
Thus st € [;(Ker(t)). By (2), we have St < I (Ker(t)) < I; (Ker(s)) = Ss. Then St < Ss.

(3) = (4) Let s, t € S with s(M) < M. To show that I (Ker(s)NIm (1)) =
IUm(t))+Ss. (<) Let wuel (Ker(s)NIm(t)). Then u(Ker(s)NIm(t))=0.
To show that Ker(st) — Ker(ut). Let x € Ker(st). Then st(x) =0, so that #(x) € Ker(s).
We have #(x) € Im(t), hence f(x) € (Ker(s) N Im(t)), so ut(x) = 0. Then x € Ker(ut).
Since  st(M) < s(M), st(M) < M by  Proposition 2.2.3. Since  Ker(st) < Ker(ut)
and st(M) « M, Sut < Sst by (3). Since ut = lut € Sut — Sst, ut € Sst. Write ut = vst
for some v € S. Then ut — vst = 0, so (u — vs)t = 0. Thus (u — vs)t(x) = 0 for all x € M.
Therefore u — vs € [,(Im(t)). Tt follows that u=u — vs + vs € I[((Im(t)) + Ss.
(D) Let u e [ (Um(t)) +Ss. To show that u € I[g(Ker(s) N Im(t)). That is
u(Ker(s) N Im(t)) =0, ie, ux=0 for every x € (Ker(s) N Im(t)). Let x € Ker(s)
and x =t(m) for some m € M. Since u € [((Im(1)) + Ss, u=v+@s for some
vel(Um(t))and @ € S Thusu(x) = v(x) + @sx) = v(tm)) + @(0)=0+0=0.

4 = (@) Let s €§S=EndM with s(M) < M. We have 1, € S.

Then by (4) we have [ (Ker(s) N 1(M)) = I, (1 (M)) +Ss. Then I (Ker(s)) = Ss.
[l

Let R be a Ring. A right R-module M is called small principally injective
(briefly, SP-injective) [12] if, every R-homomorphism from a small and principal right ideal of
R to M can be extended to an R-homomorphism from R to M. If R, is an SP-injective,

then we call R is a right SP-injective ring.
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3.2.2 Corollary. The following conditions are equivalent for a Ring R:

(1) R is SP-injective.
(2) I(a) = Ra foralla € JR).
(3) Ha) < H(b), wherea € J(R), b € R implies Rb C Ra.

(4) I(r(a) N bR) = I(b) + Ra foralla € JR), b € R.

3.2.3 Proposition. Let M be a principal module which is a self generator and let

s=EndM). If M is quasi-small P-injective, then S is a right SP-injective ring.

Proof. To show that S is a right SP-injective ring. Let s € J(S) and let @ :sS — S

be an S-homomorphism. Since M is a self generator, Ker(s) = > t(M) for some [ C S.
tel

Since s =51 €S, @(s) =g for some g € S. For any ¢ € I, we have @(s)t = gt.
Since @(s)t = p(st) = @(0) =0, gt=0. Since gt=0, gt(M)=0 so Im(t) < Ker(g).
It follows that Ker(s) C Ker(g). Then by Theorem 2.1.16, there exists an R-homomorphism
a . sS(M) — M such that as = g. Since M is a principal module, by Proposition 2.9.5, J(M) < M.
By Proposition 2.10.4, we have J(S)M < J(M). By Proposition 2.2.3, JS)M K M.
Since s € J(S), s(M) < M. Since M is quasi-small P-injective, there exists an R-homomorphism

& : M — M suchthat o = & 1 where 1 : s(M) — M is the inclusion map. Hence qIS= as = g.
Define qB:S—>S by q;(f):&f for every fe€ S. Let f,f, €S such that f, = f.
Then (5(/’1) = &fl = O?f2 = (3(}‘2) This shows that (5 is well-defined. Let f,,f, € S
and s€S. Then qu)(fls+f2) = a(fstf) = afis) + alf) = a(f)s + a(f,) = qB(fls) + (f,).
This shows that (5 is an S-homomorphism. To show that ¢@ = (51. Let sa € sS.

Then Qusa) = @(sa) = a(sa) = olsa) = (as)a) = gla) = (Ps)a) = @sa).

This shows that (Z) is an extension of @. U

3.2.4 Proposition. Let M be a principal module which is a self generator. If M is

quasi-small P-injective ,then
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(1) If sS @ tS and Ss @ St are both direct, s, t € J(S), then I(s) + () = S.

(2) 1r(Ss) = Ss for any s € J(S).

Proof. (1) Define @ : (s +)S — S by @(s + t)u=1tu for every u € S. If (s +t)u=0,

then su=—tu € sS NtS=0. Then ftu=0. Hence @(s+ f)u=tu=0. This shows that
@ is well-defined. Let (s + Huy, (s + Du, € (s + 1)S,v € S. Then @((s + Duv + (s + Hu,) =

(0((S+t)(u1v + ”2)) = t(ulv + “2) = ftuy + tu, = (0((S+t)ul)v + (0((S+t))u2.
This shows that ¢ is an S-homomorphism. Since by Proposition 3.2.3, S is right SP-injective,
there exists an S-homomorphism (5: S — § such that @ = (ﬁl where 7 : (s +1)S — S
is the inclusion map. Hence qB(l)(s +1) = (B(s +1) = @@ +1t) =1t so qB(l)(s +1) =t
Then @ (1)) + @(t=t and so @) =t— @(t=>10—- @)t e Ss N St=0.
Then @(1)s)=0 and (1 — @(1))f=0. Hence ¢@(1) € [s) and (1 — @ (1)) € I&).
Thus 1= @ (1) + (1 — @ (1)) € Ks) + [#). Then 1 € Is) + I(f) so l(s) + I(f) = S.

(2) (D) Let fs € Ss. To show that fs € Iy rs (Ss). That is f5(r(Ss)) = 0,
i.e., fs(x) = 0 for every x € 1(Ss). Let x € 1(Ss). Since fs € Ss, fs(x) = 0. (<) Let t € Ir(Ss).
To show that ¢ € Ss. Define ¢ : sS§ — S5 by @u) = tu for every u € S.
Let 0 = su € sS. To show that fu = 0. That is to show that fu(x) = 0 for every x € M.
Let x € M. Then su(x) =0 so tu(x) = 0. This shows that ¢ is well-defined.

Let su, ,su, € sS and v € §. Then @(suy +su,) = @@y +uy)) = tuy+uy) =

10U
tuyv + tuy = @(su)v + @(su,). This shows that ¢ is an S-homomorphism. Since by
Proposition 3.2.3, § is right SP-injective, there exists an S-homomorphism qB Y
such that 1,p = (511 where 1, : s§ — S and 1, : £§ — § are the inclusion maps.
We have 1 € S. Then ¢t = t1 = @@s1) = @) = @) = @)s € Ss.

This shows that +(Ss) < Ss. O
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3.2.5 Proposition. Let M be a quasi-small P-injective module and s, € S

with s{(M) K M, (1<i<n).

(1) If Ss, ©...@ Ss, is direct, then any R-homomorphism & : s,(M) + ... +
s, (M) — M has an extension in S.

Q) Ifs (M) ©...® s (M) is direct, then S(s; +...+s ) = Ss; +...+ Ss .

Proof. (1) Let Ssl@...@ Ssn is direct and let « : s, (M) +..+s5,(M) —> M

be an R-homomorphism. Since M is quasi-small P-injective, for each i, 1<i<n,
there exists an R-homomorphism ¢, : M — M such that Oasl.(m) = (Dlsl.(m) for every m € M.
Since s(M) « M for each i = 1, 2, ..., n, _anlsi (M) « M by Proposition 2.2.3(2),
T
and we have (iznllsi)(M) c Zn:lsi (M) which implies (iZn:lSi)(M) & M by Proposition 2.2.3(1).
= iz /=
Since M is quasi-small P-injective, there exists an R-homomorphism ¢ : M — M
such that, for any m € M, go(zn‘isi)(m) = a(_Zn:lsi)(m). To show that iZn‘,lq)si = ‘Zn‘,l(z)isi.
i= i= = i=
Let m € M. Then Zn‘,l(z)isi (m) = @s,(m) + @,5,(m) + ... + @ s (m) = as,(m) + as,(m) + ... +
Z
as (m) = (as, + as, + ... + as )m) = as, + s, + ... + 5 )m) = a(ési Ym) = @ (iZ:]lsi m) =
As, + 5y + ... +8)m) = (@s| + @, + ...+ @s Nm) = @s,(m) + @s,(m) + ... + @5, (m) = iZ;(DSi (m).
This shows that _Zn:1¢si = Zn:l(pisi. Then (@ ,5,— @s) + (@,5,— @s,) + ...+ (@ s — @s ) =0.
i i
Thus (@,— @)s, + (@,— @)s, + ... + (p,— @)s, = 0. Since Ss; ® Ss, @ ... Ss, is direct,
(p,— @)=(9,— @)=(@,— @) =0. Then by Proposition 2.6.8, (¢ ,— @)s, =(@,— @)s,=... =
(p,— @)s, = 0. Hence (¢,— @)s; = 0, for all 1 <i<n. Thus @.s,= @s,, forall 1 <i<n.
To show that @ = @1 Let 5,(x)) + 5,(x,) + ... + 5 (x) € 5,(M) + s,(M) + ... + 5,(M).
Then als (x) + 5,(x,)) + ... +5.(x)) = os5,(x,) + as,(x,) + ... + a5 (x) = @5,(x) +

0,5,(x,) + ..+ @5 (x)=@s(x) + @s,(x,) + ...+ @s (x) = @(s,(x) + 5,(x) + ...+
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s (x)) = @i(s,(x) + s,(x)) + ... + 5 (x)). Hence afs,(x)) + s)(x) + ... + 5(x)) =
(pl(sl(xl) + Sz(xz) + .+ Sn(xn)). This shows that @ is an extension of c.

(2) (D) Let s, + a8, + ... + a5, € Ss; + 85, + ...+ Ss,. To show that
as, + os,+...+ as €8s +s,+...+s,). Foreach i, define ¢ : (s, +s,+... +5)M) > M
by @ ((s, + s, + ... + 5)m)) = 5.(m) for every m € M. Let 0 = (s, + 5, + ... + 5)m) €
(s, + 8, + ... + 5)M). Then s5,(m) + s,(m) + ... + s,(m) = (s, + 5, + ... +5)(m) = 0.
Since s, (M) @ s,(M) @...D 5,(M) is direct, 5,(m) = 5,(m) = ... = 5,(m) = 0 so s(m) = 0.
This shows that ¢ is well-defined. Let (s, + Sy + ...+ Sn)(ml), (s, + Sy + o+ Sn)(m2) IS

(5, +8,+ ... +5)M) and r € R. Then @ ((s, + 5, + ... + 5 )m)r+ (s, +5,+ ... +5)(m,)) =

2
¢[((S1 +8, + ..+ Sn)(mlr + mz)) = Sl.(mlr + m2) = Sl.(mlr) + Sl.(mz) = Sl.(ml)r + S[(mz) =

o, ((s, +5,+ ... +5)m))r + @((s, + 5, + ... + 5)m,)). This shows that ¢ is an

R-homomorphism. By the similar proof of (1) we have (s, + Sy + o+ sIM) K M.

Since M is quasi-small P-injective, there exists an R-homomorphism @ : M — M
such that ¢, = (?)il where 7 : (s, + D) \r s s M) — M is the inclusion map.
Then s, = @.(s, + 5, + .. + 5) = (ﬁi(s1 +85, + .. +85) € S+, o+ oS

Hence a5, = al.(p[(s1 N H ORI S(s1 +8,+..+t8)so s+ as,t ...+ as =
Qs +8,+ .. +8)+t Qs +5,+ ... +8)+ ..+ a@(s +s,+.. +5)=
(o + a0+ ...+, @ )s, +85,+...+5) €S, +8,+...+5 ). (=)Let als, +5,+...+5,)

€ S(s;+s,+...+s ). Then a(s, +s,+...+s ) = as, + as, + ...+ as, € Ss;+..+Ss . 0

3.2.6 Proposition. Let M be a quasi-small P-injective module and s,(M) ® ... ® s (M)
a direct sum of small and fully invariant M-cyclic submodules of M. Then for any fully invariant

small submodule A of M, we have

AN (M) ® ... 5, (M)=(ANs,(M) ®...D (4Ns,(M)).
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Proof. (D) Since 4 N s,(M) < 4 N (s;(M) @...®D 5,(M)) for each i = 1, 2, ..., n,
we have 4 n s .0 U N sWM) cA4n M D..O 5 (M).
(c) Let a = iZi:lsi(mi) e 4 n M ©.O s5,(M)). To show that
iZ:ﬁ(m) e 4N s\ ©.O& 4 N s(M). Let m ié?‘)lsi(M) — 5. (M)
be the projection map. Since for each i, (1 < i < n), s(M) is small and fully invariant,
by Proposition 2.1.17, Ss.(M) < s,(M). Thus i(1'1191Ssi(M) is direct, so iélSsi is direct.
By Proposition 3.2.5, 7, has an extension ﬁk: M — Sk(M) such that 7, = ﬁkl
where 1 @ s(M) @ s,M) ©..® s (M) — M is the inclusion map. Let m. € M.
Then s,(m) = q(iZZ:lsi(mi ) = ﬁ'il(iZ::lsi(mi ) = 7 (ési(mi ) = 7@ € 4N s.(M).
Hence iilsi (m;)=s,(m) +s(m)+...+sm)eAN sM D AN s5,M) ©..D AN s5(M).

[

3.2.7 Theorem. Let M be a quasi-small P-injective module, s, t € S and s(M) < M.

(1) If s(M) embeds in t(M), then Ss is an image of St.
(2) If M) is an image of S(M), then St embeds in Ss.

(3) If s(M) = M), then Ss = St.

Proof. (1) Let f : s(M) — M) be an R-monomorphism. Since M is quasi-small
P-injective, there exists an R-homomorphism /} : M — M such that 1,f = J} 1

where 1, : sS(M) > M  and i\ tM) — M are the inclusion  maps.

1

Define o : St — Ss by o@f) = ufs for every u € S. Let 0 = ut € St.

To show that Im(fs) < Im(f). Let fs(m) € fs(M). Then fs(m) = fs(m) € t(M).

To show that o (uf) 0, ie., uj}s(m) = 0 for every m € M. Let m € M.
Then ufs(m) = ufs(m) = ut(y) for some y € M. Hence ufs(m) = ut(y) = O.

This shows that o is well-defined. To show that o is a left S-homomorphism.
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Let u,(f), u,(t) € St and v € S Then o(uit + uip) = o(u, + wut) =

A A

u, + uz)j}s = vu fs + u,fs = v(ulj}s) + uzfs = vou) + olu,l).
To show that o is an S-epimorphism. Let ks € Ss. To show that Ker( j;S) c Ker(s).
Let x € Ker(fs). Then f"s(x) =0, so fs(x) = fs(x) = 0. Since f is monic, s(x) = 0.
Then x € Ker(s). Since s(M) < M and j; : M — M is an R-homomorphism, J}S(M) K M
by Proposition 2.2.4. Since M is quasi-small P-injective, Ss < S J}S by Lemma 3.2.1.
Then s = 1-s = ufs for some u € S. Hence there exists kut € St such that ks = o (ku).

(2) Let f: s(M) — t(M) be an R-epimorphism. Since M is quasi-small
P-injective, there exists an R-homomorphism j; M — M such that 1,f = j; Z
where 7, : s(M) — M and 1, : M) — M are the inclusion maps. Define o : St — Ss
by out) = u j}S for every u € S. It is clear that o is a left S-homomorphism.
Let ut € Ker(o). Then 0 = o) = ufs = ufs. To show that ut = 0,
ie, uttm) = 0, for al m € M. Let m € M. Since f is an R-epimorphism,

f(s(a)) = t(m) forsome a € M. Then ut(m) = uf(s(a)) = 0.

(3) Follows from (1) and (2). [
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