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Name - Surname  Mr. Passakorn  Yordsorn 

Program   Mathematics 

Thesis Advisor   Assistant Professor Sarun  Wongwai, Ph.D. 
Academic Year   2012 
 

     ABSTRACT  

 
The purposes of this thesis are to (1) study properties and characterizations of quasi-small 

principally-injective modules, (2) study properties and characterizations of endomorphism rings of     
quasi-small principally-injective modules, (3) extend the concepts of quasi-principally injective modules, 
and (4) find some relations between quasi-principally injective modules, quasi-small principally-injective 
modules and projective modules.   

Let R be a ring. A right R-module M is called principally injective if every R-homomorphism 
from a principal right ideal of R to M can be extended to an R-homomorphism from R to M.                       
A right R-module N is called M-principally injective if every R-homomorphism from an M-cyclic 
submodule of M to N can be extended to an R-homomorphism from M to N. A right R-module M is called 
quasi-principally injective if it is M-principally injective. The notion of quasi-principally injective 
modules is extended to be quasi-small principally-injective modules. A right R-module N is called          
M-small principally-injective if every R-homomorphism from an M-cyclic small submodule of M to N  
can be extended to an R-homomorphism from M to N. A right R-module M is called quasi-small 

principally-injective if it is M-small principally-injective. 
The results are as follows. (1) The following conditions are equivalent for a projective module 

M : (a) every M-cyclic small submodule of M is projective; (b) every factor module of an M-small 
principally-injective module is M-small principally-injective; (c) every factor module of an injective       

R-module is M-small principally-injective. (2) Let M be a right R-module and S = EndR(M ). Then the 

following conditions are equivalent: (a) M is quasi-small principally-injective; (b) lS (Ker(s)) = Ss          

for all s ∈ S with s(M) ≪ M; (c) Ker(s) ⊂ Ker( t), where s, t ∈ S with s(M) ≪ M, implies St ⊂ Ss;       

(d) lS (Ker(s) ∩ I m ( t ) ) = lS (I m ( t ) ) + Ss for all s, t ∈ S with s(M) ≪ M. (3) Let M be a principal 

module which is a self generator. If M is quasi-small principally-injective, then: (a) if sS ⊕ tS              
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and Ss ⊕ St are both direct, s, t ∈ J (S), then lM(s) + lM( t) = S; (b) lSrM(Ss) = Ss for any s ∈ J (S).      

(4) Let M be a quasi-small principally-injective module, s, t ∈ S and s(M )d ≪ M: (a) if s(M ) embeds       

in t(M ), then Ss is an image of St; (b) if t(M) is an image of s(M), then St embeds in Ss;                         

(c) if s(M) ≅  t(M), then Ss ≅  St. 
 

Keywords: quasi principally-injective modules, quasi-small principally-injective modules,  
endomorphism  rings 
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     บทคดัย่อ  

 
วทิยานิพนธ์นี[ มีวตัถุประสงคเ์พืaอ (1) ศึกษาสมบติัและลกัษณะเฉพาะของ ควอซี-สมอล 

พรินซิแพล็ลิ-อินเจคทีฟมอดูล (2) ศึกษาสมบติัและลกัษณะเฉพาะของริงอนัตรสัณฐานของ ควอซี-
สมอลพรินซิแพล็ลิ-อินเจคทีฟมอดูล (3) ขยายแนวคิดของควอซี-พรินซิแพล็ลิอินเจคทีฟมอดูลและ 
(4) หาความสัมพนัธ์ระหวา่ง ควอซี-พรินซิแพล็ลิอินเจคทีฟมอดูล ควอซี-สมอลพรินซิแพล็ลิ-อินเจค
ทีฟมอดูล และโปรเจคทีฟมอดูล 

กาํหนดให้ R เป็นริง จะเรียก R-มอดูลทางขวา M วา่ พรินซิแพล็ลิอินเจคทีฟ ก็ต่อเมืaอทุกๆ 

R-สาทิสสัณฐานจากอุดมคติมุขสาํคญัทางขวาของ R ไปยงั M สามารถขยายไปยงั R-สาทิสสัณฐาน
จาก R ไปยงั M  จะเรียก R-มอดูลทางขวา N วา่ M-พรินซิแพล็ลิอินเจคทีฟ ก็ต่อเมืaอทุกๆ R-สาทิส
สัณฐานจาก M-วฏัจกัรมอดูลยอ่ยของ M ไปยงั N สามารถขยายไปยงั R-สาทิสสัณฐานจาก M ไปยงั N 
จะเรียก R-มอดูลทางขวา M วา่ ควอซี-พรินซิแพล็ลิอินเจคทีฟ ก็ต่อเมืaอ M เป็น M-พรินซิแพล็ลิ         
อินเจคทีฟ เราขยายแนวคิดของ ควอซี-พรินซิแพล็ลิอินเจคทีฟมอดูล มาเป็น ควอซี-สมอลพรินซิ
แพล็ลิ-อินเจคทีฟมอดูล โดยจะเรียก R-มอดูลทางขวา N วา่ M-สมอลพรินซิแพล็ลิ-อินเจคทีฟ ก็ต่อเมืaอ 
ทุกๆ R-สาทิสสัณฐานจากมอดูลยอ่ยแบบ M-วฏัจกัรและสมอลของ M ไปยงั N สามารถขยายไปยงั    
R-สาทิสสัณฐานจาก M ไปยงั N  จะเรียก R-มอดูลทางขวา M วา่ ควอซี-สมอลพรินซิแพล็ลิ-อินเจคทีฟ 
ก็ต่อเมืaอ M เป็น M-สมอลพรินซิแพล็ลิ-อินเจคทีฟ  

ผลการวจิยัพบวา่ (1) สาํหรับโปรเจคทีฟมอดูล M จะไดว้า่เงืaอนไขดงัต่อไปนี[ มีความสมมูล
กนั (a) ทุกๆมอดูลยอ่ยแบบ M-วฏัจกัรและสมอลของ M เป็นโปรเจคทีฟ  (b) ทุกๆมอดูลผลหารของ 
มอดูลแบบ M-สมอล พรินซิแพล็ลิ-อินเจคทีฟ เป็น M-สมอล พรินซิแพล็ลิ-อินเจคทีฟ (c) ทุกๆมอดูล
ผลหารของอินเจคทีฟ R-มอดูล เป็น M-สมอล พรินซิแพล็ลิ-อินเจคทีฟ (2) กาํหนดให ้M เป็น R-มอดูล

ทางขวา และ S = EndR(M )  แลว้จะไดว้า่เงืaอนไขดงัต่อไปนี[ มีความสมมูลกนั (a)  M เป็น ควอซี-    
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สมอลพรินซิแพล็ลิ-อินเจคทีฟ (b) lS (Ker(s)) = Ss สาํหรับทุกๆ s ∈ S โดยทีa s(M) ≪ M                  

(c) Ker(s) ⊂ Ker(t) โดยทีa s, t ∈ S และ s(M) ≪ M, แลว้จะไดว้า่ St ⊂ Ss                                           

(d) lS (Ker(s)∩ I m ( t ) ) = lS (I m ( t ) ) + Ss สาํหรับทุกๆ s, t ∈ S โดยทีa s(M) ≪ M                           

(3) กาํหนดให ้ M เป็นพรินซิแพล็มอดูลซึaงก่อกาํเนิดตวัเอง ถา้ M เป็น ควอซี-สมอลพรินซิแพล็ลิ-     

อินเจคทีฟ แลว้จะไดว้า่  (a) ถา้ sS  ⊕  tS  และ Ss ⊕ กSt  เป็นผลบวกตรง โดยทีa s,  t ∈ J(S), แลว้จะ

ไดว้า่ lM(s) + lM(t)  =  S    (b) lS rM (Ss)  =  Ss สาํหรับแต่ละ s ∈ J(S )  (4) กาํหนดให ้M เป็น ควอซี-      

สมอลพรินซิแพล็ลิ-อินเจคทีฟมอดูล โดยทีa s, t ∈ S และ s(M) ≪ M   (a) ถา้ s(M) ฝังใน t(M) แลว้จะ

ไดว้า่ Ss เป็นภาพของ St (b) ถา้ t(M) เป็นภาพของ s(M) แลว้จะไดว้า่ St ฝังใน Ss                           

(c) ถา้ s(M) ไอโซมอร์ฟิก t(M) แลว้จะไดว้า่ Ss ไอโซมอร์ฟิก St 
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CHAPTER 1 

 

INTRODUCTION 

 

In modules and rings theory research field, there are three methods for doing the research. 

Firstly, to study about the fundamental of algebra and modules theory over arbitrary rings. 

Secondly, to study about the modules over special rings.  Thirdly, to study about ring R by way of 

the categories of R-modules. Many mathematicians have concentrated on these methods. 

 

1.1 Background and Statement of the Problems 

Many generalizations of the injectivity were obtained, e.g., principally injectivity          

and mininjectivity. In [2], V. Camillo introduced the definition of principally injective modules      

by calling a right R-module M is principally injective if every R-homomorphism from a principal 

right ideal of R to M can be extended to an R-homomorphism from R to M. 

In [7], Nicholson and Yousif studied to the structure of principally injective rings        

and gave some applications of these rings. A ring R is called right principally injective if every               

R-homomorphism from a principal right ideal of R to R can be extended to an R-homomorphism 

from R to R.  

In [12], L.V. Thuyet, and T.C. Quynh introduced the definitions of a small principally 

module. A right R-module M is called small principally injective if every R-homomorphism       

from a small and principal right ideal aR to M can be extended to an R-homomorphism from R to M. 

In [10], N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai introduced               

the definitions of quasi principally injective modules. A right R-module M is called                   

quasi-principally injective if every R-homomorphism from an M-cyclic submodule of M to M       

can be extended to M.   

 

1.2 Purpose of the Study 

In this thesis, we have the purposes of study which are to extend concept of the previous 

works and to generalize new concepts which are : 
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1.2.1  To extend the concept of  principally injective modules [2]. 

1.2.2  To generalize the concept of quasi  principally injective modules [10]. 

1.2.3 dTo establish and extend some new concepts which are dual to quasi principally-

injective modules [10] and quasi-small principally-injective modules[19]. 

 

1.3  Research Questions and Hypothesis 

We are interested in seeing to extend the characterizations and properties which remain 

valid from these previous concepts which can be extended from principally injective modules [2],   

principally-injective rings [7], mininjective modules [8], principally quasi-injective modules [9], 

small principally quasi-injective modules [18] and quasi-small principally-injective modules [19].    

     In this research, we introduce the definition of quasi-small principally-injective modules 

and give characterizations and properties of these modules which are extended from the previous 

works. By let M be a right R-module. A right R-module N is called M-small principally injective if 

every R-homomorphism from an M-cyclic small submodule of M to N can be extended to an          

R-homomorphism from M to N.  Dually, a right R-module M is called quasi-small P-injective           

if it is M-small P-injective. Many of results in this research are extended from principally injective 

rings [7], mininjective rings [8], small principally quasi-injective modules [18] and quasi-small 

principally-injective modules [19]. 

 

1.4  Theoretical Perspective 

    In this thesis, we use many of the fundamental theories which are concerned to the rings 

and modules research. By the concerned theories are : 

    1.4.1  The fundamental of algebra theories. 

    1.4.2  The basic properties of rings and modules theory. 

 

1.5  Delimitations and Limitations of the Study 

For this thesis, we have the scopes and the limitations of studying which are concerned to 

the previous works which are:         

    1.5.1  To extend the concept of  M-smalldP-injective modules.  
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    1.5.2  To extend the concept of quasi-small P-injective modules.   

    1.5.3  To characterize the concept in 1.5.2 and find some new properties.  

  

1.6  Significance of the Study    

    The advantage of education and studying in this research, we can improve and develop 

the concepts and knowledge in the algebra and modules research field. 



CHAPTER 2 

 

LITERATURE REVIEW 

 

In this chapter we give notations, definitions and fundamental theories of the modules 

and rings theory which are used in this thesis. 

 

2.1  Rings, Modules, Submodules and Endomorphism Rings 

This section is assembled summary of various notations, terminology and some 

background theories which are concerned and used for this thesis. 

2.1.1 Definition. [14] By a ring we mean a nonempty set R with two binary operations   

+ and • , called addition and multiplication (also called product), respectively, such that 

  (1)  ( R, +) is an additive abelian group.  

 (2)  ( R, •) is a multiplicative semigroup.     

 (3) Multiplication is distributive (on both sides) over addition; that is, for all          

a, b, c ∈ R, a•(b + c) = a•b + a•c  and  (a + b)•c = a•c + b•c.    

  The two distributive laws are respectively called the left distributive law and the 

right distributive law.                     

  A commutative ring is a ring R in which multiplication is commutative; i.e. if a•b = 

b•a for all a , b ∈ R. If a ring is not commutative it is called noncommutative.  

  A ring with unity is a ring R in which the multiplicative semigroup ( R, •) has an 

identity element; that is, there exists e ∈ R such that ea = a = ae for all a  ∈ R. The element e is 

called unity or the identity element of R. Generally, the unity or identity element is denoted by 1. 

  In this thesis, R will be an associative ring with identity. 

2.1.2  Definition. [14] A nonempty subset I of a ring R is called an ideal of R if  

   (1)  a, b ∈ I implies a – b ∈ I.     

   (2)  a ∈ I and r ∈ R imply ar ∈ I and ra ∈ I. [14, C10]                 
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2.1.3  Definition. [13] A subgroup I of ( R, +) is called a left ideal of R if RI ⊂ I, and        

a right ideal if  IR ⊂  I. [13, 1]          

2.1.4  Definition. [14] A right ideal I of a ring R is called principal if I  = aR for some         

a ∈ R. 

2.1.5  Definition. [14] Let R be a ring, M an additive abelian group and (m, r)֏ mr,         

a mapping of  M × R into M such that       

        (1)  mr ∈ M              

    (2)  (m1+ m2)r = m1r + m2r      

         (3)  m(r1+ r2) = mr1+ mr2      

               (4)  (mr1)r2 = m(r1r2)       

    (5)  m•1 = m    

for all r, r1 
, r2 ∈ R and m, m1 

, m2 ∈ M. Then M is called a right R-module, often written as M
R

. 

        Often mr is called the scalar multiplication or just multiplication of m by r on 

right. We define left R-module similarly. [14, C14] 

2.1.6  Definition. [13] Let M be a right R-module. A subgroup N of (M, +) is called a 

submodule of M if N is closed under multiplication with elements in R, that is nr ∈ N for all n ∈ N, 

r ∈ R. Then N  is also a right R-module by the operations induced from M :   

         N × R → N, (n, r)֏ nr, for all n ∈ N, r ∈ R. [13, 6.2]
 

2.1.7  Proposition. A subset N of an R-module M is a submodule of M if and only if

      (1)  0 ∈ N.        

   (2)  n1, n2 ∈ N implies n1 −  n2 ∈ N.     

   (3)  n ∈ N, r ∈ R implies nr ∈ N.  

Proof.  See [15, Lemma 5.3].                                             
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2.1.8  Definition. [1] Let M be a right R-module and let K be a submodule of M. Then  

the set of cosets     

       M/K = { x + K | x ∈ M }             

is a right R-module relative to the addition and scalar multiplication defined via   

    ( x + K ) + ( y + K ) = ( x + y) + K    and    ( x + K )r = xr + K.       

The additive identity and inverses are given by       

                    K = 0 + K    and    − ( x + K ) = −x + K. 

  The module M/K is called ( the right R-factor module of ) M modulo K or            

the factor module of  M by K. [1, p33] 

2.1.9  Definition. [13] Let M and N  be right R-modules. A function f : M → N  is called  

an ( R-module ) homomorphism if for all m, m1, m2 ∈ M and  r ∈ R    

    f ( m1r + m2) = f ( m1)r + f ( m2).                                                      

Equivalently,  f ( m1 + m2) = f ( m1) + f ( m2)  and  f ( mr) = f ( m)r.     

   The set of R-homomorphisms of M in N is denoted by Hom
R
(M, N ). In particular, 

with this addition and the composition of mappings, Hom
R
(M, M ) = End

R
(M ) becomes a ring, 

called the endomorphism ring of M and  f ∈ End
R
(M ) is called an R-endomorphism. [13, 6.4] 

2.1.10  Definition. [1] Let f : M → N  be an R-homomorphism. Then            

   (1) f  is called R-monomorphism (or R-monic) if  f  is injective (one-to-one). 

   (2)  f  is called R-epimorphism (or R-epic) if f  is surjective (onto).                

   (3)  f  is called R-isomorphism if f  is bijective (one-to-one and onto).      

   Two modules M and N are said to be R-isomorphic, abbreviated M ≅ N in case 

there is an R-isomorphism f : M → N.                

2.1.11  Definition. [1] Let K be a submodule of M. Then the mapping η
K

 : M → M/K  

from M onto the factor module M/K defined by  [1, p43]    
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               η
K

( x) = x + K ∈ M/K  ( x ∈ M )            

is seen to be an R-epimorphism with kernel K. We call η
K the natural epimorphism of M onto M/K. 

2.1.12  Definition. [1] Let A ⊂ B. Then the function ι = ι
 A ⊂ B 

: A → B defined by           

ι = (1
B | A) : a֏ a for all a ∈ A is called the inclusion map of A in B. Note that if  A ⊂ B and A ⊂ C, 

and if B ≠ C, then ι
A ⊂ B ≠ ι

A ⊂ C . Of course 1
A
 = ι

A ⊂ A. [1, p2] 

2.1.13  Definition. [14] Let M and N be right R-modules and let f : M → N be an            

R-homomorphism. Then the set [14,c14,3]       

      Ker ( f )  = { x ∈ M | f ( x ) = 0 } is called the kernel of  f   

and   

        f ( M )  = { f ( x) ∈ N  | x ∈ M } is called the homomorphic image (or simply image)   

of M under f and is denoted by Im( f ).   

2.1.14  Proposition. Let M and N be right R-modules and let f : M → N be an                  

R-homomorphism. Then      

         (1)  Ker ( f ) is a submodule of M.     

      (2)  Im( f ) = f ( M ) is a submodule of N.                   

Proof.  See [13, 6.5].                                             

2.1.15  Proposition. Let M and N be right R-modules and let f : M → N be an                

R-isomorphism. Then the inverse mapping  f -1: N → M is an R-isomorphism.      

Proof.  See [14, Chapter 14, 3].                               

2.1.16  Theorem. Let M, M’ , N and N’ be right R-modules and let f : M → N                 

be an   R-homomorphism.        

      (1)  If g : M → M’  is an epimorphism with Ker(g) ⊂ Ker( f ), then there exists    

a unique homomorphism h : M’  → N such that       

           f = hg.              
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N 

M g 

h 
f 

(1) 

N 

N’ 

h g 

f 

(2) 

M 

> M' 

h 

Ker(g) ⊂ Ker( f ) 

Moreover, Ker(h) = g(Ker( f )) and Im(h) = Im( f ), so that h is monic if and only if Ker(g) = Ker( f ) 

and h is epic if and only if  f  is epic.       

      (2)  If g : N’ → N is a monomorphism with Im( f ) ⊂ Im(g), then there exists       

a unique homomorphism h : M → N’ such that       

           f = gh.             

Moreover, Ker(h) = Ker( f ) and Im(h) = g← (Im( f )), so that h is monic if and only if f is monic    

and h is epic if and only if Im(g) = Im( f ). 

  

 

           

                                          

Proof.  See [1, Chapter 1, 46].                               

     2.1.17 Definition. [20] A submodule K of the module M is fully invariant in M if         

f(K) ⊂ K for every endomorphism f of M. 

2.2  Essential and Superfluous Submodules      

    In this section, we give the definitions of essential and superfluous submodules and some 

theories which are used in this thesis.    

2.2.1 Definition. [13] A submodule K of M is called essential (or large) in M, 

abbreviated K e⊂ M, if for every submodule L of M, K ∩ L = 0 implies L = 0. [13, 17.1] 

2.2.2 Definition. [13] A submodule K of M is called superfluous (or small ) in M, 

abbreviated K ≪ M, if for every submodule L of M, K + L = M implies L = M. [13, 19.1] 
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2.2.3  Proposition. Let M be a right R-module with submodules K ⊂ N ⊂ M and           

H ⊂ M. Then      

    (1)  N ≪	M  if and only if  K	≪	M and  N/K	≪ M/K;  

       (2)  H + K ≪	M  if and only if  H ≪	M and  K	≪ M.      

Proof.  See [1, Proposition 5.17].                      

 

2.2.4  Proposition. If K ≪ M and f : M → N is a homomorphism then f ( K ) ≪ N.            

In particular, if K ≪ M ⊂ N then K ≪ N.         

Proof.  See [1, Proposition 5.18].                     

 

2.3  Annihilators and Singular Modules       

    In this section, we give the definitions of annihilators, singular modules and some 

theories which are used in this thesis.   

2.3.1  Definition. [1] Let M be a right (resp. left) R-module. For each X ⊂ M, the right 

(resp. left) annihilator of X in R is defined by      

   r
R
( X ) = { r ∈ R | xr = 0, ∀x∈ X } ( resp. l

R
( X ) = { r ∈ R | rx = 0, ∀x∈ X }).    

For a singleton {x}, we usually abbreviated to r
R
( x )  ( resp. l

R
( x ) ). [1, p37] 

2.3.2  Proposition. Let M be a right R-module, let X and Y be subsets of M and let A   

and B be subsets of R. Then        

    (1)  r
R
( X ) is a right ideal of R.      

    (2)  X  ⊂  Y  imples  r
R
( Y )   ⊂  r

R
( X ).     

    (3)  A  ⊂  B  imples  l
M

( B )   ⊂  l
M

( A ).     

    (4)  X  ⊂  l
M

 r
R
( X )  and  A  ⊂ r

R
 l

M
( A ).                   

Proof.  See [1, Proposition 2.14 and Proposition 2.15].                   
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2.3.3 Proposition. Let M and N be right R-modules and let f : M → N be a 

homomorphism. If N’ is an essential submodule of N, then f 
-1
( N’ ) is an essential submodule of M. 

Proof.  See [4, Lemma 5.8(a)].                     

2.3.4   Proposition.  Let M be a right R-module over an arbitrary ring R, the set 

   Z( M ) = { x ∈ M | r
R
( x ) is essential in R

R
 }                                         

is a submodule of M.           

Proof.  See [4, Lemma 5.9].                                

2.3.5 Definition. [4] The submodule Z( M ) = { x ∈ M | r
R
( x ) is essential in R

R
 }           

is called the singular submodule of M. The module M is called a singular module if Z( M ) = M.    

The module M is called a nonsingular module if Z( M ) = 0.  

 

2.4  Maximal and Minimal Submodules  

    In this section, we give the definitions and some properties of maximal submodules, 

minimal (or simple) submodules and some theories which are used in this thesis. 

2.4.1  Definition. [13] A right R-module M is called simple if M ≠ 0 and M has no 

submodules except 0 and M. [13, 6.2] 

2.4.2  Definition. [13] A submodule K of M is called maximal submodule of M if              

K ≠ M and it is not properly contained in any proper submodules of M, i.e. K is maximal in M if,      

K ≠ M and for every A ⊂ M, K ⊂ A implies K = A. [13, 6.7] 

2.4.3  Definition. [13] A submodule N of M is called minimal (or simple) submodule      

of M if N ≠ 0 and it has no non zero proper submodules of M, i.e. N is minimal (or simple) in M        

if N ≠ 0 and for every nonzero submodules A of M, A ⊂ N implies A = N. [13, p115] 

2.4.4  Proposition.  Let M and N be right R-modules. If  f : M → N is an epimorphism 

with Ker ( f ) = K, then there is a unique isomorphism σ  : M/K → N such that σ  (m+K ) = f (m)   
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for all m ∈M.                                                                                                                    

Proof.  See [1, Corollary 3.7].                                

2.4.5  Proposition.  Let K be a submodule of M. A factor module M/K is simple if and 

only if K is a maximal submodule of M.         

Proof.  See [1, Corollary 2.10].                               

 

2.5  Injective and Projective Modules       

    In this section, we give the definitions of the injective modules, injective testing, 

projective modules and some theories which are used in this thesis. 

2.5.1  Definition. [1] Let M be a right R-module. A right R-module U is called injective 

relative to M (or U is M-injective) if for every submodule K of M, for every homomorphism              

ϕ : K → U can be extended to a homomorphism α : M → U. [1, p184]   

      A right R-module U is said to be injective if it is M-injective for every right          

R-module M. 

2.5.2  Proposition.  The following statements about a right R-module U are equivalent :

   (1)  U is injective;       

   (2)  U is injective relative to R;      

   (3)  For every right ideal I ⊂ R
R
 and every homomorphism h : I → U there exists 

an x ∈ U such that h is left multiplicative by x       

           h(a) = xa for all a ∈ I.                                               

Proof.  See [1, 18.3, Baer’s Criterion].                    

2.5.3  Definition. [1] Let M be a right R-module. A right R-module U is called projective 

relative to M (or U is M-projective) if for every N
R

, every epimorphism g : M
R
→ N

R
, for every 

homomorphism γ : U
R
→ N

R
 can be lifted to an R-homomorphism γ̂ : U → M. [1, p184]   

               A right R-module U is said to be projective if it is projective for every right           

R-module M. 
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2.5.4  Proposition. Every right (resp. left) R-module can be embedded in an injective 

right (resp. left) R-module.          

Proof.  See [1, Proposition 18.6].                            

 

2.6  Direct Summands and Product of Modules                         

    Given two modules M1 and M2 we can construct their Cartesian product M1 × M2.       

The structure of this product module is then determined “co-ordinatewise” from the factors             

M1 × M2. For this section we give the definitions of direct summand, the projection and the 

injection maps, product of modules and some theories which are used in this thesis. 

2.6.1  Definition. [1] Let M be a right R-module. A submodule X of M is called a direct 

summand of M if there is a submodule Y of M such that X ∩ Y = 0 and X + Y = M. We write              

M = X ⊕ Y; such that Y is also a direct summand. [1, p66]  

2.6.2  Definition. [1] Let M1 and M2 be R-modules. Then with their products module     

M1 × M2 are associated the natural injections and projections    

            ϕ
j 
: M

j  
→ M1 × M2 and π

j
 : M1 × M2 → M

j
             

( j = 1, 2 ),  are defined by        

       ϕ1( x1) = (x1, 0),  ϕ2( x2) = (0, x2)                     

and     

       π1( x1, x2) = x1,  π2( x1, x2) = x2.            

Moreover, we have  

         π1ϕ1  = 1
1M           and    π2ϕ2 = 1

2M .[1, p67] 

2.6.3  Definition. [1] Let A be a direct summand of M with complementary direct 

summand B, so  M = A ⊕ B. Then        

              π
A
 : a + b֏ a  ( a ∈ A, b ∈ B )                   

defines an epimorphism  π
A
 : M → A  is called the projection of M on A along B. [1, p69] 
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2.6.4  Definition. [13] Let {A
i , i ∈ I } be a family of objects in the category C.            

An object P in C with morphisms { π
i
 : P → A

i
 } is called the product of the family {A

i , i ∈ I } 

if :      

    For every family of morphisms { f
i
 : X → A

i
 } in the category C, there is a 

unique morphism  f : X → P  with π
i
 f  =  f

i
 for all i ∈ I.      

    For the object P, we usually write∏
∈ I  i

iA , ∏ I iA or ∏ i
A . If all A

i
 are equal to 

A, then we put ∏ I iA = AI. [13, 9.1]         

    The morphism π
i
 are called the i-projections of the product. The definition can be 

described by the following commutative diagram :  

 

 

   2.6.5  Definition. [13] Let { M
i
 , i ∈ I } be a family of R-modules and (∏

∈ I i 
i

M , π
i
 ) the 

product of the M
i
 . For m, n ∈∏

∈ I i 
i

M , r ∈ R, using                           

         π
i
 (m + n) = π

i
 (m) + π

i
 (n)     and     π

i
(mr) = π

i
 (m)r,              

a right R-module structure is defined on ∏
∈ I i 

i
M such that the π

i
 are homomorphisms. With this 

structure (∏
∈ I i 

i
M , π

i
 ) is the product of the { M

i
 , i ∈ I } in R-module. [13, 9.3] 

2.6.6  Proposition.  Properties:       

  (1)  If  { f
i
 : N → M

i
 , i ∈ I } is a family of morphisms, then we get the map 

   f : N → ∏
∈ I i 

i
M       such that n֏ ( f

i
(n))

i ∈ I                      

and Ker ( f )  = ∩
I
 Ker ( f

i
 ) since f (n) = 0 if and only if  f

i
(n) = 0 for all i ∈ I.    

∏
I iA

i
π

i
A

X

i
ff
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      (2)  For every j ∈ I, we have a canonical embedding   

                           ε
j
 : M

j
 → ∏

∈ I i 
i

M ,    such that m
j
֏ ( m

j
δ

ji
 )

i ∈ I , mj
 ∈ M

j
 ,                    

with  ε
j 
π

j
 = 1

jM , i.e. π
j
 is a retraction and ε

j
 a coretraction.                     

 This construction can be extended to larger subsets of I : For a subset A ⊂ I         

we form the product ∏
∈A i 

i
M and a family of homomorphisms  

         f
j
 : ∏
∈A i 

i
M → M

j
 ,  f

j
 = 





−∈

∈

.AI

A for

j

j

for  

j
π

 

 

 

, 

0

 
          

Then there is a unique homomorphism            

       ε
A
 : ∏
∈A i 

i
M  → ∏

∈ I i 
i

M  with  ε
A
π

j
 = 




−∈

∈

.AI

A for

j

j

for  

j
π

 

 

 

, 

0

 
                     

The universal property of ∏
∈A i 

i
M yields a homomorphism            

         π
A
: ∏
∈ I i 

i
M → ∏

∈A i 
i

M with π
A
π

j
 = π

j
 for j ∈ I.           

Together this implies ε
A
π

A
π

j
 = ε

A
π

j
 = π

j
 for all j ∈ I, and by the properties of the product ∏

∈A i 
i

M , 

we get ε
A
π

A
 = 1

A
M .  

Proof.  See [13, 9.3, Properties (1), (2)]                              

2.6.7  Definition. [1]  We say ( ) AMα α∈  is independent in case for each Aα ∈   

  ( ) 0.M Mα ββ α≠
∩ =∑       

 If the submodules ( ) AMα α∈  of M are independent, we say that the sum 
A

Mα∑ is direct 

and write          

   
A

Mα∑ = 
A

Mα⊕ . 

2.6.8 Proposition. [1] Let ( ) AMα α∈  be an indexed set of submodules of a module M   

with inclusion maps ( ) Aiα α∈ . Then the following are equivalent:    

          (a) 
A

Mα∑  is the internal direct sum of ( ) AMα α∈ ;    
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          (b) :
A A

i i M Mα α= ⊕ ⊕ → is monic;     

          (c) ( ) AMα α∈  is independent;      

          (d) ( ) FMα α∈  is independent for every finite subset F A⊂ ;   

          (e) For every pair ,B C A⊂ , if B ∩ C = ∅ , then    

   ( )
B

Mβ∑ ∩ ( )
C

Mγ∑ = 0.      

Proof.  See [1, Proposition 6.10].                            

 

2.7  Generated and Cogenerated Classes      

    In this section, we give some definitions and theories of the generated and cogenerated 

classes which are concerned in this thesis. 

2.7.1  Definition. [13] A subset X of a right R-module M is called a generating set of M     

if  XR = M. We also say that X generates M or M is generated by X. If there is a finite generating set 

in M, then M is called finitely generated. [13, 6.6] 

2.7.2  Definition. [1] Let U be a class of right R-modules. A module M is ( finitely ) 

generated by U (or U ( finitely ) generates M ) if there exists an epimorphism [1, 8]    

     i
I i
U 

 ∈
⊕  → M                          

for some (finite) set I and U
i
 ∈ U for every i ∈ I.               

    If U = {U} is a singleton, then we say that M is ( finitely ) generated by U          

or ( finitely ) U-generates; this means that there exists an epimorphism  

      U
( I )

 → M                         

for some (finite) set I. 

2.7.3  Proposition.  If a module M has a generating set L ⊂ M, then there exists an 

epimorphism 

      R
( L ) 
→ M  

Moreover, M is finitely R-generated if and only if M is finitely generated.     

Proof.  See [1, Theorem 8.1].                     
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2.7.4  Definition. [17] Let M be a right R-module. A submodule N of M is said to be      

an M-cyclic submodule of M if it is the image of an endomorphism of M. 

2.7.5  Definition. [1] Let U be a class of right R-modules. A module M is ( finitely ) 

cogenerated by U (or U ( finitely ) cogenerates M ) if there exists a monomorphism  

      M → ∏
∈ I i 

iU                                      

for some (finite) set I and U
i
 ∈ U for every i ∈ I.      

     If U = {U} is a singleton, then we say that a module M is ( finitely ) cogenerated by U 

or ( finitely ) U-cogenerates; this means that there exists a monomorphism   

      M → U
I                                       

for some (finite) set I.[1, 8]  

 

2.8  The Trace and Reject        

     In this section, we give some definitions and theories of the trace and reject which are 

concerned in this thesis.  

2.8.1  Definition. [1] Let U be a class of right R-modules. The trace of U in M and the 

reject of U in M are defined by        

  Tr
M

 (U) = ∑{ Im(h)  |  h : U → M  for some U ∈ U }  

and         

  Rej
M

 (U) = ∩{ Ker(h)  |  h : M → U  for some U ∈ U }.  

If U = {U} is a singleton, then the trace of U in M and the reject of U in M are in the form 

  Tr
M

 (U ) = ∑{ Im(h)  |  h ∈ Hom
R
(U, M ) }                        

and                  

  Rej
M

 (U ) = ∩{ Ker(h) |  h ∈ Hom
R
(M, U ) }.[1, 8] 

2.8.2  Proposition.  Let U be a class of right R-modules and let M be a right R-module. 

Then 



                                                                                                                                                          17 

 

       (1)  Tr
M

 (U) is the unique largest submodule L of M generated by U; 

   (2) Rej
M

(U) is the unique smallest submodule K of M such that M/K is 

cogenerated by   U.            

Proof.  See [1, Proposition 8.12].                                       

 

2.9  Socle and Radical of Modules       

     In this section, we give some definitions and theories of the socle and radical of modules 

which are used in this thesis.  

2.9.1  Definition. [13] Let M be a right R-module. The socle of M, Soc (M ), we denote 

the sum of all simple submodules of M. If there are no simple submodules in M we put Soc (M ) = 0. 

2.9.2  Definition. [13] Let M be a right R-module. The radical of M, Rad( M ), we denote 

the intersection of all maximal submodules of M. If M has no maximal submodules we set          

Rad( M ) = M. [13, 21] 

2.9.3  Proposition.  Let ε  be the class of simple R-modules and let M be an R-module. 

Then    

    Soc( M )  =  Tr
M

 (ε )      

         =  ∩{ L ⊂ M  |  L is essential in M }.  

Proof.  See [13, 21.1].                      

2.9.4  Proposition.  Let ε  be the class of simple R-modules and let M be an R-module. 

Then     

   Rad( M )   =  Rej
M

 (ε )      

         =  ∑{ L ⊂ M  |  L is superfluous in M }.     

Proof.  See [13, 21.5].                     
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2.9.5  Proposition.  Let M be a right R-module. A right R-module M is finitely generated 

if and only if Rad ( M ) ≪ M and M/Rad( M ) is finitely generated.      

Proof.  See [13, 21.6, (4)].                        

2.9.6  Proposition.  Let M be a right R-module. Then Soc( M ) e⊂ M if and only if every 

non-zero submodule of M contains a minimal submodule.       

Proof.  See [1, Corollary 9.10].                      

2.10  The Radical of a Ring            

    In this section, we give some definitions and theories of the radical of a ring which are 

used in this thesis.  

2.10.1  Definition. [1] Let R be a ring. The radical Rad( R
R

) of R
R
 is an (two side) ideal 

of R. This ideal of R is called the ( Jacobson) radical of R, and we usually abbreviated by [1, 15]

             J ( R )  = Rad( R
R

). 

Since R = 1R is finite generated, J( R)  ≪ R. If a ∈ J ( R) , then aR ⊂ J( R)  ≪ R so        

aR ≪ R. If aR ≪ R, then aR ⊂ J( R)  and so a ∈ aR ⊂ J( R) . This shows that a ∈ J( R )                    

if and only if  aR ≪ R. 

2.10.2  Definition. [1] Let R be a ring. An element x ∈ R is called right ( left )           

quasi-regular  if  1 – x  has a right (resp. left ) inverse in R.                

         An element x ∈ R is called quasi-regular if it is right and left quasi-regular.

     A subset of R is said to be ( right, left ) quasi-regular if every element in it has 

the corresponding property. 

2.10.3  Proposition.  Given a ring R for each of the following subsets of R is equal to the 

radical J(R) of R.         

    ( J1)  The intersection of all maximal right ( left ) ideals of R;  

    ( J2)  The intersection of all right ( left ) primitive ideals of R;  
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    ( J3)  { x ∈ R |  rxs is quasi-regular for all r, s ∈ R };   

    ( J4)  { x ∈ R |  rx is quasi-regular for all r ∈ R };   

    ( J5)  { x ∈ R |  xs is quasi-regular for all s ∈ R };   

    ( J6)  The union of all the quasi-regular right ( left ) ideals of R;  

    ( J7)  The union of all the quasi-regular ideals of R;   

    ( J8)  The unique largest superfluous right ( left ) ideals of R;   

Moreover, ( J3), ( J4), ( J5), ( J6) and ( J7) also describe the radical J ( R )  if “quasi-regular” is 

replaced by “right quasi-regular” or by “left quasi-regular”.                              

Proof.  See [1, Theorem 15.3].                      

2.10.4  Proposition.  Let R be a ring with radical J( R ) . Then for every right R-module 

M,      

             J( R )M
R
 ⊂ Rad( M

R
).               

If R is semisimple modulo its radical, then for every right R-module,   

          J( R )M
R
 = Rad( M

R
)           

and M/J( R)M
R
 is semisimple.          

Proof.  See [1, Corollary 15.18].                    



CHAPTER 3 

 

RESEARCH RESULT 

 

In this chapter, we present the results of M-small P-injective modules and quasi-small  

P-injective modules. 

 

3.1  M-smalldP-injective Modules 

3.1.1  Definition.  Let M be a right R-module. A right R-module N is called                   

M-small principally injective (briefly, M-small P-injective) if every R-homomorphism from          

M-cyclic small submodule of M to N can be extended to an R-homomorphism from M to N. 

Equivalently, for any endomorphism s of M with s(M ) ≪ M , every R-homomorphism from s(M)   

to N can be extended to an R-homomorphism from M to N.        

3.1.2  Lemma.  Let M and N be right R-modules. Then N is M-small P-injective               

if and only if for each s ∈ S = End
R
(M ) with s(M ) ≪ M ,     

  Hom
R
( M, N )s = {f  ∈ Hom

R
( M, N ) : f (Ker(s)) = 0}.  

Proof.  ( ⇒ ) Assume that N is M-small P-injective. Let s ∈ S = End
R
(M) and s(M) ≪ M.              

To show that Hom
R
( M, N )s = {f ∈ Hom

R
( M, N ) : f (Ker(s)) = 0}. ( ⊂ ) Let gs ∈ Hom

R
( M, N )s. 

Since s : M → M and g : M → N, gs : M → N. Let x ∈ Ker(s). Then gs(x) = g(s(x)) = g(0) = 0. 

Hence gs ∈ {f ∈ Hom
R
( M, N ) : f (Ker(s)) = 0}. This shows that Hom

R
( M, N )s ⊂ {f ∈ 

Hom
R
( M, N ) : f(Ker(s)) = 0}. ( ⊃ ) Let f ∈ { f ∈ Hom

R
( M, N ) : f(Ker(s)) = 0}. Let x ∈ Ker(s). 

Since f(Ker(s)) = 0, f(x) = 0. Then Ker(s) ⊂ Ker(f ). By Proposition 2.1.16, there exists an              

R-homomorphism ϕ : s(M) → N such that f  = ϕs. Since s(M) ≪  M, there exists an                         

R-homomorphism ϕ̂  : M → N such that ϕ  = ϕ̂ ι where ι : s(M) → M is the inclusion map.      
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Hence f = ϕs = (ϕ̂ ι)s = ϕ̂ s ∈ Hom
R
( M, N )s.      

  ( ⇐ ) Let s ∈ S = End
R
(M) with s(M) ≪ M and ϕ : s(M) → N be an                        

R-homomorphism. Then ϕs ∈ Hom
R
( M, N ). Let x ∈ Ker(s). Then ϕs(x) = ϕ(0) = 0.           

Therefore ϕs(Ker(s)) = 0. Then by assumption, ϕs ∈ Hom
R
( M, N )s. Hence ϕs = µs, for some          

µ ∈ Hom
R
( M, N ). This shows that N is M-small P-injective.                 

3.1.3  Example. Let R = 
0
F F

F
 
 
 

 where F is a field, M
R
 = R

R
 and N

R
 = 

0 0
F F 

 
 

.        

Then N is M-small P-injective.  

Proof.  We have only X1 = 0
0 0

F 
 
 

, X2 = 0 0
0 F

 
 
 

, X3 = 
0 0
F F 

 
 

, X4 = 0
0

F
F

 
 
 

, X5 = 0 0
0 0

 
 
 

,   and    

X6 = 
0
F F

F
 
 
 

 are nonzero submodules of M, and we see that only  X1 = 0
0 0

F 
 
 

 is only a small 

submodule of M because for every X
i
 ⊂  M , 2 ≤ i ≤ 5, X

i
 ≠ M then X1 + X

i
 ≠ M.                               

Now we show that X1 is an M-cyclic submodule of M. Define s : 
0
F F

F
 
 
 

 → 0
0 0

F 
 
 

                       

by s
0

a b

c

  
     

 = 0
0 0

b 
 
 

 for every 
0
a b

c
 
 
 

 ∈  
0
F F

F
 
 
 

. To show that s is well-defined.                        

Let 1 1

10
a b

c
 
 
 

,  2 2

20
a b

c
 
 
 

 ∈  
0
F F

F
 
 
 

 such that 1 1

10
a b

c
 
 
 

 = 2 2

20
a b

c
 
 
 

. Then s 1 1

10

a b

c

  
     

 = 10
0 0

b 
 
 

 = 

20
0 0

b 
 
 

 = s 2 2

20

a b

c

  
     

. To show that s is an R-homomorphism.  Let 1 1

10
a b

c
 
 
 

,
  

2 2

20
a b

c
 
 
 

∈
0
F F

F
 
 
 

 

and 1 2

30
r r

r
 
 
 

∈ R = 
0
F F

F
 
 
 

.  Then s 1 1

10

a b
c

  
    

1 2

30
r r

r
 
 
 

 + 2 2

20

a b
c

 
  

 = s 1 1 1 2 1 3

1 30

a r a r b r
c r

 + 
  

 + 

2 2

20

a b
c

 
  

 = s 1 1 1 2

21

2 1 3

3

2

0

a r a a r b r b
c r c

 + + + 
   +  

 = 1 2 1 3 20
0 0

r ra b b+ + 
 
 

 = 1 2 1 30
0 0

r ra b+ 
 
 

 + 20
0 0

b 
 
 

 = 

s 1

3

1 1 2 1 3

10

a r a r b r

c r

 + 
     

 + s 2 2

20

a b

c

  
     

 = s
0
1

3

1
0

21

1

ra b

rc

r   
       

 + s 2 2
0 2

a b

c

  
     

. We must show that s is an 

R-epimorphism. Let 0
0 0

x 
 
 

∈ 0
0 0

F 
 
 

 = X1. Then there exists 0
0 0

x 
 
 

∈
0
F F

F
 
 
 

 such that    

s 0

0 0

x  
     

 = 0
0 0

x 
 
 

. Let ϕ : X1 → N  be an R-homomorphism. Since 0 1
0 0

 
 
 

∈ X1 , there exists     

x11 , x12 ∈ F such that ϕ 0 1
0 0

  
     

 =
 

11 12

0 0
x x 

 
 

. Then ϕ 0 1
0 0

  
     

 = ϕ 0 1 0 0

0 0 0 1

   
       

 = 
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ϕ 0 00 1
0 10 0

         

 
  
 

 = 11 12

0 0
x x 

 
 

0 0
0 1

 
 
 

 = 120
0 0

x 
 
 

. Then 11 12

0 0
x x 

 
 

 = 120
0 0

x 
 
 

 so x11 = 0.         

Define ϕ̂ : M → N  by ϕ̂ 11 12

220
a a

a

         

 = 12 11 12 12

0 0
xa ax 

 
 
 

 for every 11 12

220

a a

a
 
 
 

∈ M .                       

To show that ϕ̂  is well-defined. Let 11 12

220
a a

a

 
 
 
 

, 11 12

220
b b

b

 
 
  
 

∈ M  such that
 

11 12

220
a a

a

 
 
 
 

 = 11 12

220
.b b

b

 
 
  
 

 

Then ϕ̂ 11 12

220

a a
a

  
     

 = 12 11 12 12

0 0
x a x a 

 
 
 

 = 12 11 12 12

0 0
x b x b 

 
  
 

 = ϕ̂ 11 12

220
.b b

b

 
 
  
 

 
 
 

 To show that ϕ̂  is an 

R-homomorphism. Let 11 12

220
a a

a

 
 
 
 

,
 

11 12

220
b b

b

 
 
  
 

 ∈ 
0
F F

F
 
 
 

 and 1 2

30
r r

r
 
 
 

 ∈ R.                                  

Then ϕ̂ 11 12 1 2

322 00
a a r r

ra

            

 + 11 12

220
b b

b

    

 = ϕ̂ 11 1 11 2 12 3

22 30

a r a r a r

a r

    

+
 + 11 12

220

b b

b

    

 = 

ϕ̂ 11 1 11 11 2 12 3 12

22 3 220

a r b a r a r b
a r b

 + + + 
   +  

 = 12 11 1 11 12 22 3 22( ) ( )

0 0

x a r b x a r b+ + 
 
 

 = 

12 11 1 12 11 12 22 3 12 22

0 0
x a r x b x a r x b+ + 

 
 

 = 12 11 1 12 22 3

0 0
x a r x a r 

 
 

 + 12 11 12 22

0 0
x b x b 

 
 

 = 

ϕ̂ 11 1 11 2 12 3

22 30

a r a r a r
a r

 + 
     

 + ϕ̂ 11 12

220

b b
b

  
     

 = ϕ̂ 1 211 12

322 00

r ra a

ra

   
       

 + ϕ̂ 11 12

220

b b

b

  
  
  

 = 

ϕ̂ 1 211 12

322 00

r ra a

ra

    
         

 + ϕ̂ 11 12

220

b b

b

  
  
  

. To show that ϕ̂ ι = ϕ. Let
 

0
0 0

x 
  
 

 ∈ X1.                   

Then ϕ̂ ι 0

0 0

x  
     

 = 
0

0 0
ˆ xϕ ι

  
     

 = 
0

0 0
ˆ xϕ

  
     

 = 120

0 0

x x 
 
 

 = 11 12

0 0

x x 
 
 

0 0

0 x

 
 
 

 =
 

0 1 0 0

0 0 0 x
ϕ

  
     

 
 
 

 = 
0 1 0 0

0 0 0 x
ϕ

   
       

 = 
0

0 0
.

xϕ   
    

 This shows that ϕ̂  is an extension of ϕ .   

Thus  N  is M-small  P-injective.                                                     

3.1.4  Proposition.  Let M be a right R-modules and { N
i
, i ∈ I } be a family of right     

R-modules. Then the direct product ∏
∈ I  i

iN is M-small P-injective if and only if each N
i
 is                

M-small P-injective. 

Proof.  ( ⇒ ) Let { N
i
, i ∈ I } be a family of right R-modules and the direct product                   

i I∈
∏ N

i
 is M-small P-injective. Let i ∈ I , we must show that N

i
 is M-small P-injective.                                    

Let s ∈ dS = End
R
(M) with s(M ) ≪ M and let ϕ : s(M )→ N

i
 be an R-homomorphism.                   

Let π
i
 and ϕ

i
, for each i ∈ I, be the i-th projection map and the i-th injection map, respectively. 
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Since 
i I∈
∏ N

i
 is M-small P-injective, there exists an R-homomorphism ϕ̂ : M → ∏

∈ I  i
iN  such that 

ϕ̂ ι = ϕ
i
ϕ  where ι : s(M) → M  is the inclusion map. Thus π

i
ϕ̂ ι = π

i
ϕ

i
ϕ, so by Definition 2.6.2, 

π
i
ϕ̂ ι = ϕ.  Thus π

i
ϕ̂  is an extension of ϕ. 

  ( ⇐ ) Let N
i
 be M-small P-injective for each i ∈ I. To show that                      

i I∈
∏ N

i
 is M-small P-injective.  Let s ∈ S = End

R
(M) with s(M) ≪ M and let ϕ : s(M) →

i I∈
∏ N

i
          

be an R-homomorphism. Let π
i
 be the i-th projection map. Since, for each i, N

i
 is M-small              

P-injective, there exists an R-homomorphism α
i
: M → N

i
 such that π

i
ϕ = α

i
ι                      

where ι : s(M)→ M is the inclusion map. Then by Definition 2.6.5  and  Proposition 2.6.6,          

we obtain ϕ̂  :  M  → ∏
∈ I  i

iN  such that π
i
ϕ̂  =  α

i
 for each i ∈ I.  Then π

i
ϕ̂ ι = α

i
ι,                   

so  π
i
ϕ  =  α

i
ι  = π

i
ϕ̂ ι. Hence  π

i
ϕ  = π

i
ϕ̂ ι  for each i ∈ I. Therefore  ϕ  = ϕ̂ ι.                

3.1.5 Lemma.  Let M and N
i
 (1 ≤ i ≤ n) be right R-modules. Then iN

n

i 1  =
⊕ is M-small        

P-injective if and only if  N
i
 is M-small P-injective for each  i = 1, 2, 3, … , n. 

Proof.  ( ⇒ ) Let i ∈ {1, 2, 3, … , n}. To show that N
i
 is M-small P-injective. Let s ∈ S = End

R
(M) 

with s(M) ≪ M and let ϕ : s(M) → N
i
 be an R-homomorphism. Let π

i
 and ϕ

i
 be the i-th projection 

map and the i-th injection map, respectively.  Since iN
n

i 1  =
⊕  is M-small P-injective, there exists an  

R-homomorphism ϕ̂ : M → iN
n

i 1  =
⊕  such that ϕ̂ ι = ϕ

i
ϕ  where ι : s(M) → M  is the inclusion map. 

Thus π
i
ϕ̂ ι = π

i
ϕ

i
ϕ, so by Definition 2.6.2, π

i
ϕ̂ ι = ϕ.  Thus π

i
ϕ̂  is an extension of ϕ. 

  ( ⇐ )  We must show that iN
n

i 1  =
⊕ is M-small P-injective. Let s ∈ S = End

R
(M)  

with s(M) ≪ M and let α : s(M) → iN
n

i 1  =
⊕  be an R-homomorphism. Since for each                            

i ∈ {1, 2, 3, … , n}, N
i 

is M-small P-injective, there exists an R-homomorphism α
i
 : M → N

i
        

such that α
i
ι = π

i
α where π

i
 is the i-th projection map from iN

n

i 1  =
⊕  to N

i
 and ι : s(M) → M            

is the inclusion map. Set α̂ = ι1α1 + ι2α2 + . . . + ι
n
α

n
 : M → iN

n

i 1  =
⊕  where ι

i : N
i
 → iN

n

i 1  =
⊕            
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for each i ∈ {1, 2, 3, … , n} is the i-injection map. We must to show that α̂  is an extension of α.                 

Let s(m) ∈ s(M). Then α̂ ι(s(m)) = α̂ (s(m)) = ι1α1(s(m)) + ι2α2(s(m)) + … + ι
n
α

n
(s(m)) =                   

α1(s(m)) + α2(s(m)) + … + α
n
(s(m)) = α1ι1(s(m)) + α2ι2(s(m)) + … + α

n
ι
n
(s(m)) = π1α (s(m)) +             

π2α(s(m)) + … + π
n
α(s(m)) = (π1 + π2 + … + π

n
)α (s(m)) = α (s(m)). Then iN

n

i 1  =
⊕  is                     

M-small P-injective.                                                                                                                              

3.1.6  Lemma.  Any direct summand of an M-small P-injective module is again M-small 

P-injective. 

Proof.  Let N be an M-small P-injective module and let A be a direct summand of N.                      

To show that A is an M-small P-injective. Let s ∈ S = End
R
(M) with s(M) ≪ M                             

and let α : s(M) → A be an R-homomorphism. Since N is M-small P-injective, there exists an        

R-homomorphism α̂ : M → N such that ϕα = α̂ ι where ι : s(M) → M is the inclusion map       

and ϕ : A → N is the injection map. Let π : N → A be the projection map. Then πϕα = π α̂ ι . 

Hence by Definition 2.6.2, α  = π α̂ ι. Then π α̂  is an extension of α .                                                   

3.1.7  Theorem.  The following conditions are equivalent for a projective module M. 

              (1)  Every M-cyclic small submodule of M is projective.                          

               (2)  Every factor module of an M-small P-injective module is M-small P-injective. 

              (3)  Every factor module of an injective R-module is M-small P-injective.                           

Proof. (1) ⇒ (2) Let N be an M-small P-injective module, X a submodule of N.                               

To show that N/X is an M-small P-injective. Let s ∈ S = End
R
(M) with s(M) ≪ M                         

and let α : s(M)d→ N/X be an R-homomorphism. Since s(M) is projective, there exists an              

R-homomorphism ϕ  : s(M) → N such that α = ηϕ where η : N → N/X is the natural                     

R-epimorphism. Since N is M-small P-injective, there exists an R-homomorphism  β : M → N    

such that ϕ  = β ι where ι : s(M) → M is the inclusion map. Then α = ηϕ = ηβ ι.                     

Hence α  = ηβ ι.  Therefore ηβ  is an extension of α .  Thus N/X is an M-small P-injective.  
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      (2) ⇒ (3) Let N be an injective R-module and X be a submodule of N.                   

It is clear that an injective R-module is an M-small P-injective module, so N is M-small P-injective. 

Then by (2),  N/X is an M-small P-injective.                                                     

      (3) ⇒ (1) Let s(M) ≪ M, γ : A → B be an R-epimorphism and                           

let ϕ : s(M) → B be an R-homomorphism. Let E be an injective R-module and                          

embed A in E by Proposition 2.5.4.  Since γ  is an R-epimorphism, by Proposition 2.4.4,             

there exists  an R-isomorphism σ  :  A/Ker (γ ) → B such that γ  = ση1 where η1 : A → A/Ker (γ )  

is the natural R-epimorphism. Then by Proposition 2.1.15, we have σ -1 : B → A/Ker (γ )                

is an R-isomorphism, so B ≅ dA/Ker (γ ) and A/Ker (γ ) is a submodule of E/Ker (γ ).                       

By assumption, there exists an R-homomorphism ϕ̂ d:dMd→dE/Ker (γ ) such that                          

ι1σ
-1ϕ  = ϕ̂ ι2 where ι1 : A/Ker (γ ) → E/Ker (γ ) and ι2 : s(M) → M are the inclusion maps.    

Since M is projective, there exists an R-homomorphism β : M → E such that ϕ̂  = η2β            

where η2 : E → E/Ker (γ ) is the natural R-epimorphism. Then ϕ̂ ι2 = η2β ι2.                           

Hence  ι1σ
-1ϕ  = ϕ̂ ι2  =  η2β ι2.  It  follows  that  ι1σ

-1ϕ  = η2β ι2. To show that               

β (s(M)) ⊂ A. Let s(m) ∈ s(M). Then ι1σ
-1ϕ (s(m)) = η2β ι2(s(m)) = η2β (s(m)) =        

η2(β (s(m))) = β (s(m)) + Ker (γ ). Hence ι1σ
-1ϕ (s(m)) = σ -1ϕ (s(m)) = a + Ker (γ )                    

for some a ∈ A, so β (s(m)) + Ker (γ ) = a + Ker (γ ). Thus β (s(m)) – a ∈ Ker (γ ).                           

It follows that  β (s(m)) = (β (s(m)) – a) + a ∈ Ker (γ ) + A = A. To show that ϕ  = γβ.                  

Let s(m) ∈ s(M). Then ι1σ
-1ϕ (s(m)) = σ -1ϕ (s(m)) = η2β ι2(s(m)) = η2β (s(m)).                   

Hence ι1σ
-1ϕ (s(m)) = η2β ( s(m)) = β (s(m)) + Ker (γ ), so ι1σ

-1ϕ (s(m)) = β (s(m)) + Ker (γ ). 

Since γ  is an R-epimorphism, ϕ (s(m)) = γ (a) for some a ∈ A. Thus ι1σ
-1ϕ (s(m)) =             

ι1σ
-1γ  (a) = σ -1γ (a) = η1(a) = a + Ker (γ ). It follows that β (s(m)) + Ker (γ ) =                               

a + Ker (γ ). Then β (s(m)) – a ∈ Ker (γ ). Hence γ (β (s(m)) – a) = 0, so γβ (s(m)) = γ (a) = 

ϕ (s(m)).  Thus  γ β (s(m))  =  ϕ (s(m)).  This shows that  β   lifts  ϕ.               
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3.2  Quasi-small P-injective Modules       

     A right R-module M is called quasi-small P-injective if it is M-small P-injective. In this 

section, we present the results of characterizations and properties of the endomorphism ring of        

quasi-small P-injective modules. 

     3.2.1  Lemma.  Let M be a right R-module and S = End
R
(M ). Then the following 

conditions are equivalent :  

           (1)  M is quasi-small P-injective.     

           (2)  l
S

(Ker(s)) = Ss  for all s ∈ S with s(M) ≪  M. 

           (3)  Ker(s) ⊂ Ker(t), where s, t ∈ S with s(M) ≪ M, implies St ⊂ Ss.  

           (4)  l
S

(Ker(s)∩ I m ( t ) ) = l
S

(I m ( t ) ) + Ss  for all s, t ∈ S with s(M) ≪  M. 

Proof.  (1) ⇒ (2) Let s ∈ S = End
R
(M) with s(M) ≪ M. ( ⊃ ) Let fs ∈ Ss. To show that                  

fs ∈ l
S

(Ker(s)). Let x ∈ Ker(s). Then s(x) = 0, fs(x) = f(s(x)) = f(0) = 0.                                     

( ⊂ ) Let f ∈ l
S

(Ker(s)). To show that f ∈ Ss. Let x ∈ Ker(s). Since f(Ker(s)) = 0,                        

f(x) = 0. Then x ∈ Ker(f ). This shows that Ker(s) ⊂  Ker(f ). Since s : M → s(M) is an                                                                                                                              

R-epimorphism, by Proposition 2.1.16, there exists an R-homomorphism ϕ  : s(M) → M             

such that f = ϕ s. Since s(M) ≪ M and M is quasi-small P-injective, there exists an                                 

R-homomorphism ϕ̂ : M → M such that ϕ = ϕ̂ ι where ι : s(M) → M is the inclusion map.                                     

Hence  f = ϕ s = (ϕ̂ ι)s = ϕ̂ s ∈ Ss. This shows that  f ∈ Ss.                         

        (2) ⇒ (1) To show that M is quasi-small P-injective. Let s ∈ S = End
R
(M)       

with s(M) ≪ M and let ϕ : s(M) → M be an R-homomorphism. Then ϕ s ∈ S.                                 

To show that ϕ s ∈ l
S

(Ker(s)). Let x ∈ Ker(s). Then s(x) = 0 so ϕ s(x) = ϕ (s(x)) = ϕ (0) = 0.                           

This shows that ϕ s ∈ l
S

(Ker(s)). Then by assumption, we have ϕ s ∈ Ss. Hence ϕ s = ϕ̂ s            

for some ϕ̂ ∈ S. To show that ϕ̂ ι = ϕ. Let s(m) ∈ s(M). Then ϕ̂ι (s(m)) = ϕ̂ (ι(s(m))) =    

ϕ̂ (s(m)) = ϕ̂ s(m) = ϕ s(m) =  ϕ (s(m)). Then M is quasi-small P-injective.                                            



                                                                                                                                                            27 

 

     (2) ⇒ (3) Let s, t ∈ S with s(M) ≪ M and Ker(s) ⊂  Ker(t ). First we show that 

l
S

(Ker(t )) ⊂ l
S

(Ker(s)). Let g ∈ l
S

(Ker(t )). Then g(x) = 0 for every x ∈ Ker(t ).                            

To show that g ∈ l
S

(Ker(s)), that is g(x) = 0 for every x ∈ Ker(s). Let x ∈ Ker(s).                     

Since Ker(s) ⊂  Ker(t ), x ∈ Ker(t ). Hence g(x) = 0. Thus g ∈ l
S

(Ker(s)). We now show that        

St ⊂ l
S

(Ker(t )). Let st ∈ St and let x ∈ Ker(t ). Then t(x) = 0, st(x) = s(t(x)) = s(0) = 0.            

Thus st ∈ l
S

(Ker(t )). By (2), we have St ⊂ l
S

(Ker(t )) ⊂ l
S

(Ker(s)) = Ss. Then St ⊂ Ss.     

     (3) ⇒ (4) Let s, t ∈ S with s(M) ≪ M. To show that l
S

(Ker(s)∩ I m ( t )) = 

l
S

(I m ( t )) + Ss. ( ⊂ ) Let u ∈ l
S

(Ker(s) ∩ I m ( t )). Then u(Ker(s) ∩ I m ( t )) = 0.                     

To show that Ker(st) ⊂ Ker(ut). Let x ∈ Ker(st). Then st(x) = 0, so that t(x) ∈ Ker(s).               

We have t(x) ∈ I m ( t ) , hence t(x) ∈ (Ker(s) ∩ I m ( t )), so ut(x) = 0. Then x ∈ Ker(ut).                  

Since st(M) ⊂ s(M), st(M) ≪ M by Proposition 2.2.3. Since Ker(st) ⊂ Ker(ut)                        

and st(M) ≪ M, Sut ⊂ Sst by (3). Since ut = 1ut ∈ Sut ⊂ Sst, ut ∈ Sst.  Write ut = vst      

for some v ∈ S. Then ut − vst = 0, so (u − vs)t = 0. Thus (u − vs)t(x) = 0 for all x ∈ M. 

Therefore u − vs ∈ l
S

(I m ( t )). It follows that u = u − vs + vs ∈ l
S

(I m ( t )) + Ss.        

( ⊃ ) Let u ∈ l
S

(I m ( t )) + Ss. To show that u ∈ l
S

(Ker(s) ∩ I m ( t )). That is 

u(Ker(s) ∩ I m ( t )) = 0, i.e., ux = 0 for every x ∈ (Ker(s) ∩ I m ( t )). Let x ∈ Ker(s)             

and x = t(m) for some m ∈ M. Since u ∈ l
S

(I m ( t )) + Ss, u = v + ϕ s for some      

v ∈ l
S

(I m ( t )) and ϕ ∈ S. Thus u(x) = v(x) + ϕ s(x) = v(t(m))  +  ϕ(0) = 0 + 0 = 0. 

     (4) ⇒  (2) Let s ∈ S = End
R
(M) with s(M) ≪ M. We have 1

M
∈ S.             

Then by (4) we have l
S

(Ker(s) ∩ 1 ( M )) = l
S

(1 (M )) + Ss.  Then l
S

(Ker(s)) = Ss.                  

 

     Let R be a Ring. A right R-module M is called small principally injective               

(briefly, SP-injective) [12] if, every R-homomorphism from a small and principal right ideal of       

R to M can be extended to an R-homomorphism from R to M. If R
R
 is an SP-injective,                  

then we call R is a right SP-injective ring. 
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3.2.2  Corollary.  The following conditions are equivalent for a Ring R:  

 (1)  R is SP-injective.                                                  

 (2)  lr(a) = Ra for all a ∈ J(R).                                    

 (3)  r(a) ⊂ r(b), where a ∈ J(R), b ∈ R implies Rb ⊂ Ra.                                       

           (4)  l(r(a) ∩ bR) = l(b) + Ra  for all a ∈ J(R), b ∈ R. 

3.2.3 Proposition. Let M be a principal module which is a self generator and let              

s = End(M).  If  M  is quasi-small P-injective, then S is a right SP-injective ring.  

Proof.  To show that S is a right SP-injective ring. Let s ∈ J(S) and let ϕ : sS → S                     

be an S-homomorphism. Since M is a self generator, Ker(s) = ( )
t I

Mt
∈
∑  for some I ⊂ S.           

Since s = s⋅1 ∈ sS, ϕ (s) = g  for some g ∈ S. For any t ∈ I, we have ϕ (s)t = gt.              

Since ϕ (s)t = ϕ (st) = ϕ (0) = 0, gt = 0. Since gt = 0, gt(M) = 0 so Im(t) ⊂ Ker(g).                  

It follows that Ker(s) ⊂ Ker(g). Then by Theorem 2.1.16, there exists an R-homomorphism         

α : s(M) → M such that αs = g. Since M is a principal module, by Proposition 2.9.5, J(M) ≪ M. 

By Proposition 2.10.4, we have J(S)M ⊂ J(M). By Proposition 2.2.3, J(S)M ≪ M.                     

Since s ∈ J(S), s(M) ≪ M. Since M is quasi-small P-injective, there exists an R-homomorphism 

α̂  : M → M  such that  α = α̂ ι  where ι : s(M) → M is the inclusion map. Hence ˆ sαι = αs = g. 

Define ϕ̂ : S → S by ϕ̂ ( f ) = α̂ f for every f ∈ S. Let  f1 , f2 ∈ S such that f1 = f2.                 

Then ϕ̂ ( f1) = α̂ f1 = α̂ f2 = ϕ̂ ( f2 ). This shows that ϕ̂  is well-defined. Let f1 , f2 ∈ S               

and s∈S. Then ϕ̂ (f1s+f2) = α̂ (f1s+f2) = α̂ (f1s) + α̂ (f2) = α̂ (f1)s + α̂ (f2) = ϕ̂ (f1s) + (f2).                     

This shows that ϕ̂  is an S-homomorphism. To show that ϕ = ϕ̂ ι. Let sa ∈ sS.                       

Then ϕ̂ ι(sa) = ϕ̂ (sa) = α̂ (sa) = α(sa) = (αs)(a) = g(a) = (ϕ(s))(a) = ϕ(sa).                            

This  shows  that ϕ̂  is  an  extension  of  ϕ .               

3.2.4 Proposition.  Let M be a principal module which is a self generator. If M is    

quasi-small P-injective ,then 
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    (1)  If sS ⊕  tS and Ss ⊕ St are both direct, s, t ∈ J (S), then l(s) + l(t) = S.

    (2)  l r(Ss) = Ss for any s ∈ J(S). 

Proof.  (1) Define ϕ : (s + t)S → S by ϕ (s + t)u = tu for every u ∈ S. If (s + t)u = 0,         

then su = −tu ∈ sS ∩ tS = 0. Then tu = 0. Hence ϕ (s + t)u = tu = 0. This shows that        

ϕ  is well-defined.  Let (s + t)u1, (s + t)u2 ∈ (s + t)S, v ∈ S. Then ϕ ( (s + t)u1v + (s + t)u2) = 

ϕ ( (s + t)(u1v + u2)) = t(u1v + u2) = tu1v + tu2 = ϕ ((s + t)u1)v + ϕ ((s + t))u2.                           

This shows that ϕ  is an S-homomorphism. Since by Proposition 3.2.3, S is right SP-injective,    

there exists an S-homomorphism ϕ̂ : S → S such that ϕ  = ϕ̂ ι where ι : (s + t)S → S                  

is the inclusion map. Hence ϕ̂ (1)(s + t)  = ϕ̂ (s + t)  = ϕ (s + t)  = t, so ϕ̂ (1)(s + t )  = t.                   

Then ϕ̂ (1)(s) + ϕ̂ (1)t = t and so ϕ̂ (1)(s) = t − ϕ̂ (1)t = (1 − ϕ̂ (1))t ∈ Ss ∩ St = 0.      

Then ϕ̂ (1)(s) = 0 and (1 − ϕ̂ (1))t = 0. Hence ϕ̂ (1) ∈ l(s) and (1 − ϕ̂ (1)) ∈ l(t).              

Thus 1 = ϕ̂ (1) + (1 − ϕ̂ (1)) ∈ l(s) + l(t). Then 1 ∈ l(s) + l(t)  so l(s) + l(t) = S. 

            (2) ( ⊃ ) Let fs ∈ Ss. To show that fs ∈ l
S

r
S

(Ss). That is fs(r(Ss)) = 0,               

i.e., fs(x) = 0 for every x ∈ r(Ss). Let x ∈ r(Ss). Since fs ∈ Ss, fs(x) = 0. ( ⊂ ) Let t ∈ lr(Ss).                           

To show that t ∈ Ss. Define ϕ  : sS → tS by ϕ (su) = tu for every u ∈ S.                                       

Let 0 = su ∈ sS. To show that tu = 0. That is to show that tu(x) = 0 for every x ∈ M.                  

Let x ∈ M. Then su(x) = 0 so tu(x) = 0. This shows that ϕ  is well-defined.                                 

Let su1 , su2 ∈ sS and v ∈ S. Then ϕ (su1v + su2) = ϕ (s(u1v + u2)) = t(u1v + u2) =  

tu1v + tu2 = ϕ (su1)v + ϕ (su2). This shows that ϕ  is an S-homomorphism. Since by        

Proposition 3.2.3, S is right SP-injective, there exists an S-homomorphism ϕ̂  : S → S               

such that  ι2ϕ  = ϕ̂ ι1 where ι1 : sS → S and ι2 : tS → S are the inclusion maps.                           

We have 1 ∈ S. Then t = t ⋅1 = ϕ (s ⋅1) = ϕ (s) = ϕ̂ (s) = ϕ̂ (1)s ∈ Ss.                                         

This   shows   that   lr(Ss)   ⊂  Ss.                                                                                                                                         



                                                                                                                                                            30 

 

3.2.5  Proposition. Let M be a quasi-small P-injective module and s
i
 ∈ S                     

with  s
i
(M) ≪ M, (1 ≤ i ≤ n). 

            (1) If Ss1 ⊕ … ⊕  Ss
n
 is direct, then any R-homomorphism α : s1(M) + . . . + 

s
n
(M) → M has an extension in S.                     

            (2) If s1(M ) ⊕ … ⊕   s
n
(M) is direct, then S(s1 + . . . + s

n
) = Ss1 + . . . + Ss

n
. 

Proof. (1) Let Ss1 ⊕ … ⊕  Ss
n
 is direct and let α : s1(M) + . . . + s

n
(M) → M                                

be an R-homomorphism. Since M is quasi-small P-injective, for each i, 1 ≤ i ≤ n,                       

there exists an R-homomorphism ϕ
i

: M → M such that αs
i
(m) = ϕ

i
s

i
(m) for every m ∈ M .  

Since s
i
(M) ≪ M for each i = 1, 2, …, n, 

1

n

i
i=
∑ s M( )  ≪ M by Proposition 2.2.3(2),                            

and we have 
1

( )
n

i
i=
∑ s M( )  ⊂ 

1

n

i
i=
∑ s M( )  which implies 

1
( )

n

i
i=
∑ s M( )  ≪ M  by Proposition 2.2.3(1). 

Since M is quasi-small P-injective, there exists an R-homomorphism ϕ  : M → M                       

such that, for any m ∈  M , ϕ
1

( )
n

i
i=
∑ ( )s m  = α

1
( )

n

i
i=
∑ s m( ).  To show that 

1

n

i
i

ϕ
=
∑ s =

1
.

n

i i
i

ϕ
=
∑ s                 

Let m ∈ M. Then 
1

n

i i
i

ϕ
=
∑ s m( )  = ϕ 1s1(m) + ϕ 2s2(m) + … + ϕ

n
s

n
(m) = αs1(m) + αs2(m) + … +   

αs
n
(m) = (αs1 + αs2 + … + αs

n
)(m) = α(s1 + s2 + … + s

n
)(m) = α

1

n

i
i=
∑ s m( )( )  = ϕ

1

n

i
i=
∑ s m( )( )  =        

ϕ(s1 + s2 + … + s
n
)(m) = (ϕs1 + ϕs2 + … + ϕs

n
)(m) = ϕs1(m) + ϕs2(m) + … + ϕs

n
(m) = 

1
.

n

i
i

ϕ
=
∑ s m( )            

This shows that 
1

n

i
i

ϕ
=
∑ s = 

1
.

n

i i
i

ϕ
=
∑ s  Then (ϕ 1s1− ϕ s1) + (ϕ 2s2− ϕ s2) + … + (ϕ

n
s

n
− ϕ s

n
) = 0. 

Thus (ϕ 1− ϕ )s1 + (ϕ 2− ϕ )s2 + … + (ϕ
n
− ϕ )s

n
 = 0. Since Ss1 ⊕  Ss2 ⊕ … ⊕  Ss

n
 is direct, 

(ϕ 1− ϕ ) = (ϕ 2− ϕ ) = (ϕ
n
− ϕ ) = 0. Then by Proposition 2.6.8, (ϕ 1− ϕ )s1 = (ϕ 2− ϕ )s2 = … = 

(ϕ
n
− ϕ )s

n
 = 0.  Hence (ϕ

i
− ϕ )s

i
 =  0, for all 1 ≤ i ≤ n. Thus ϕ

i
s

i
= ϕs

i
, for all 1 ≤ i ≤ n.        

To show that α = ϕ ι. Let s1(x1) + s2(x2) + … + s
n
(x

n
) ∈ s1(M ) + s2(M) + … + s

n
(M).                            

Then α(s1(x1) + s2(x2) + … +s
n
(x

n
)) = αs1(x1) + αs2(x2) + … + αs

n
(x

n
) = ϕ 1s1(x1) +         

ϕ 2s2(x2) + … + ϕ
n
s

n
(x

n
) = ϕ s1(x1)  + ϕ s2(x2)  + … + ϕ s

n
(x

n
)  = ϕ (s1(x1)  + s2(x2)  + … +    
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s
n
(x

n
)) = ϕ ι(s1(x1)  + s2(x2) + … + s

n
(x

n
)). Hence α(s1(x1) + s2(x2) + … + s

n
(x

n
)) =          

ϕ ι(s1(x1)  +  s2(x2)  + … +  s
n
(x

n
)).  This shows that ϕ  is an extension of α.  

    (2) ( ⊃ ) Let α1s1 + α2s2 + … + α
n
s

n
 ∈ Ss1 + Ss2 + … + Ss

n
. To show that                            

α1s1 + α2s2 + … + α
n
s

n 
∈ S(s1 + s2 + … + s

n
).  For each i, define ϕ

i
 : (s1 + s2+ … + s

n
)(M) → M        

by ϕ
i
((s1 + s2 + … + s

n
)(m)) = s

i
(m) for every m ∈ M.  Let 0 = (s1 + s2 + … + s

n
)(m) ∈                       

(s1 + s2 + … + s
n
)(M). Then s1(m) + s2(m) + … + s

n
(m) = (s1 + s2 + … + s

n
)(m) = 0.                              

Since s1(M) ⊕  s2(M) ⊕ … ⊕  s
n
(M) is direct, s1(m) = s2(m) = … = s

n
(m) = 0 so s

i
(m) = 0.           

This shows that iϕ  is well-defined. Let (s1 + s2 + … + s
n
)(m1 ), (s1 + s2 + … + s

n
)(m2 ) ∈                      

(s1 + s2 + … + s
n
)(M) and r ∈ R. Then ϕ

i
( (s1 + s2 + … + s

n
)(m1)r + (s1 + s2 + … + s

n
)(m2))  =     

ϕ
i
((s1 + s2 + … + s

n
)(m1r + m2 )) = s

i
(m1r + m2) = s

i
(m1r) + s

i
(m2) = s

i
(m1)r + s

i
(m2) =                

ϕ
i
((s1 + s2 + … + s

n
)(m1))r + ϕ

i
((s1 + s2 + … + s

n
)(m2 )). This shows that ϕ

i
 is an                              

R-homomorphism. By the similar proof of (1) we have (s1 + s2 + … + s
n
)(M ) ≪ M.                                                      

Since M is quasi-small P-injective, there exists an R-homomorphism ˆiϕ  : M → M                       

such that ϕ
i
 = ˆiϕ ι where ι : (s1 + s2 + … + s

n
)(M) → M is the inclusion map.                               

Then s
i
 = ϕ

i
(s1 + s2 + … + s

n
) = ˆiϕ (s1 + s2 + … + s

n
) ∈ S(s1 + s2 + … + s

n
).                                     

Hence α
i
s

i
 = α

i
ϕ̂i (s1 + s2 + … + s

n
) ∈ S(s1 + s2 + … + s

n
) so α1s1 + α2s2 + … + α

n
s

n
 =             

α1 ϕ̂1 (s1 + s2 + … + s
n
) + α2 2ϕ̂ (s1 + s2 + … + s

n
) + … + α

n
ˆnϕ (s1 + s2 + … + s

n
) =                             

(α1 1ϕ̂  + α2 2ϕ̂ + … + α
n

ˆnϕ )(s1 + s2 + … + s
n
) ∈ S(s1 + s2 + … + s

n
). ( ⊂ ) Let α(s1 + s2 + … + s

n
) 

∈ S(s1 + s2 + … + s
n
). Then α(s1 + s2 + … + s

n
) = αs1 + αs2 + … + αs

n
∈ Ss1 +. . .+ Ss

n
.          

3.2.6  Proposition.  Let M be a quasi-small P-injective module and s1(M) ⊕ … ⊕  s
n
(M )  

a direct sum of small and fully invariant M-cyclic submodules of M. Then for any fully invariant 

small submodule A of  M, we have  

 A ∩  (s1(M) ⊕ … ⊕  s
n
(M)) = (A ∩ s1(M)) ⊕ … ⊕  (A ∩ s

n
(M)). 
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Proof.  ( ⊃ )  Since A ∩ s
i
(M ) ⊂ A ∩ (s1(M ) ⊕ … ⊕  s

n
(M)) for each i = 1, 2, …, n,             

we have (A ∩ s1(M)) ⊕ … ⊕ d(A ∩ s
n
(M)) ⊂ A ∩ (s1(M) ⊕ … ⊕ d s

n
(M)).                                   

( ⊂ ) Let a = 
1

n

i i
i=
∑ s m( )  ∈ A ∩  (s1(M ) ⊕ … ⊕  s

n
(M)). To show that                                   

1
( )

n

i i
i

ms
=
∑  ∈ (A ∩ s1(M)) ⊕ … ⊕  (A ∩ s

n
(M)). Let π

k
 : 

  1

n

ii =
⊕ s M( )  → s

k
(M)                            

be the projection map. Since for each i, (1 ≤ i ≤ n), s
i
(M) is small and fully invariant,                    

by Proposition 2.1.17, Ss
i
(M) ⊂ s

i
(M).   Thus 

1  ii

n

=
⊕ MSs ( )  is direct, so 

1  ii

n

=
⊕ Ss  is direct.                                                      

By Proposition 3.2.5, π
k 

has an extension ˆkπ : M → s
k
(M) such that π

k
 = ˆkπ ι                           

where ι : s1(M) ⊕  s2(M) ⊕ … ⊕  s
n
(M) → M  is the inclusion map. Let m

i
 ∈ M.                        

Then s
i
(m

i
) = π

i
1

( )
n

i i
i=
∑ s m( )  = ˆiπ ι

1
( )

n

i i
i=
∑ s m( )  = 

1
ˆ ( )

n

i i i
i

π
=
∑ s m( )  = ˆiπ (a) ∈ A ∩  s

i
(M ).                

Hence 
1

( )
n

i i
i=
∑ s m = s1(m1) + s2(m2) + … + s

n
(m

n
) ∈ A ∩  s1(M) ⊕  A ∩  s2(M) ⊕ … ⊕  A ∩  s

n
(M) .                                                                                               

 

 3.2.7  Theorem.  Let M be a quasi-small P-injective module, s, t ∈ S and s(M)d ≪ dM. 

    (1) If s(M) embeds in t(M), then Ss is an image of St.   

    (2) If t(M) is an image of s(M), then St embeds in Ss.   

    (3) If s(M) ≅  t(M), then Ss ≅  St. 

Proof.  (1) Let f : s(M) → t(M) be an R-monomorphism. Since M is quasi-small                              

P-injective, there exists an R-homomorphism f̂  : M → M such that ι2 f = f̂ ι1                       

where ι1 : s(M) → M and ι2 : t(M) → M are the inclusion maps.                                   

Define σ : St → Ss by σ (ut) = u f̂ s for every u ∈ S. Let 0 = ut ∈ St.                                            

To show that Im( f̂ s) ⊂ Im(t). Let f̂ s(m) ∈ f̂ s(M). Then f̂ s(m) = fs(m) ∈ t(M).                              

To show that σ (ut) = 0, i.e., u f̂ s(m) = 0 for every m ∈ M. Let m ∈ M.                              

Then u f̂ s(m) = ufs(m) = ut(y) for some y ∈ M. Hence u f̂ s(m) = ut(y) = 0.                                   

This shows that σ is well-defined. To show that σ is a left S-homomorphism.                                 
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Let u1(t), u2(t) ∈ St and v ∈ S. Then σ (vu1t + u2t) = σ ((vu1 + u2)t) =                                       

(vu1 + u2) f̂ s = vu1 f̂ s + u2 f̂ s = v(u1 f̂ s) + u2 f̂ s = vσ(u1t) + σ(u2t).                                                

To show that σ is an S-epimorphism. Let ks ∈ Ss. To show that Ker( f̂ s) ⊂ Ker(s).                       

Let x ∈ Ker( f̂ s). Then f̂ s(x) = 0, so fs(x) = f̂ s(x) = 0. Since f is monic, s(x) = 0.                     

Then x ∈ Ker(s). Since s(M)d ≪ dM and f̂  : M → M is an R-homomorphism, f̂ s(M) ≪ M           

by Proposition 2.2.4. Since M is quasi-small P-injective, Ss ⊂ S f̂ s by Lemma 3.2.1.                  

Then s = 1⋅s = u f̂ s for some u ∈ S. Hence there exists kut ∈ St such that ks = σ (kut).   

    (2) Let f : s(M ) → t(M) be an R-epimorphism. Since M is quasi-small                

P-injective, there exists an R-homomorphism f̂  : M → M such that ι2 f = f̂ ι1                          

where ι1 : s(M) → M and ι2 : t(M) → M  are the inclusion maps. Define σ : St → Ss                      

by σ (ut) = u f̂ s for every u ∈ S. It is clear that σ is a left S-homomorphism.                                 

Let ut ∈ Ker(σ ). Then 0 = σ (ut) = u f̂ s = ufs. To show that ut = 0,                                             

i.e., ut(m) = 0, for all m ∈ M.  Let m ∈ M. Since f is an R-epimorphism,                                 

f(s(a)) = t(m) for some a ∈ M. Then ut(m) = uf(s(a)) = 0.                

    (3) Follows from (1) and (2).                 
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